【題目】如圖,在三棱柱中,底面
是邊長(zhǎng)為4的等邊三角形,
,
為
的中點(diǎn).
(1)證明:平面
.
(2)若是等邊三角形,求二面角
的正弦值.
【答案】(1)證明見(jiàn)解析,(2)
【解析】
(1)根據(jù)等腰三角形三線合一證明和
即可得證;
(2)建立空間直角坐標(biāo)系,利用向量求解二面角.
(1)證明:連接.
因?yàn)?/span>,
,
,所以
,所以
.
因?yàn)?/span>為
的中點(diǎn),所以
.
因?yàn)?/span>為
的中點(diǎn),且
,所以
.
因?yàn)?/span>,所以
平面
.
(2)解:取的中點(diǎn)
,連接
,因?yàn)?/span>
是等邊三角形,所以
.
由(1)可知平面
,則
,
,
兩兩垂直,故以
為原點(diǎn),
所在直線為
軸,過(guò)
作
的平行線為
軸,
所在直線為
軸建立空間直角坐標(biāo)系
.
因?yàn)榈酌?/span>是邊長(zhǎng)為4的等邊三角形,所以
.
因?yàn)?/span>是等邊三角形,所以
.
所以,
,
,
,則
,
.
設(shè)平面的法向量
,
則,令
,得
.
易知平面的一個(gè)法向量為
,
記二面角為
,則
,
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,
分別為內(nèi)角
所對(duì)的邊,且滿足
.
(Ⅰ)求的大小;
(Ⅱ)現(xiàn)給出三個(gè)條件:①; ②
;③
.
試從中選出兩個(gè)可以確定的條件,寫(xiě)出你的選擇并以此為依據(jù)求
的面積 (只需寫(xiě)出一個(gè)選定方案即可,選多種方案以第一種方案記分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為點(diǎn)
,左、右頂點(diǎn)分別為
,長(zhǎng)軸長(zhǎng)為
,橢圓上任意一點(diǎn)
(不與
重合)與
連線的斜率乘積均為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,過(guò)點(diǎn)的直線
與橢圓
交于
兩點(diǎn),過(guò)點(diǎn)
的直線
與橢圓
交于
兩點(diǎn),且
,試問(wèn):四邊形
可否為菱形?并請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)兩點(diǎn)
,
,且圓心
在直線
:
上.
(1)求圓的方程;
(2)設(shè)圓與
軸相交于
、
兩點(diǎn),點(diǎn)
為圓
上不同于
、
的任意一點(diǎn),直線
、
交
軸于
、
點(diǎn).當(dāng)點(diǎn)
變化時(shí),以
為直徑的圓
是否經(jīng)過(guò)圓
內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知二次函數(shù)(
、
、
均為實(shí)常數(shù),
)的最小值是0,函數(shù)
的零點(diǎn)是
和
,函數(shù)
滿足
,其中
,為常數(shù).
(1)已知實(shí)數(shù)、
滿足、
,且
,試比較
與
的大小關(guān)系,并說(shuō)明理由;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)實(shí)施“光盤(pán)行動(dòng)”以后,某自助啤酒吧也制定了自己的行動(dòng)計(jì)劃,進(jìn)店的每一位客人需預(yù)交元,啤酒根據(jù)需要自己用量杯量取,結(jié)賬時(shí),根據(jù)每桌剩余酒量,按一定倍率收費(fèi)(如下表),每桌剩余酒量不足
升的,按
升計(jì)算(如剩余
升,記為剩余
升).例如:結(jié)賬時(shí),某桌剩余酒量恰好為
升,則該桌的每位客人還應(yīng)付
元.統(tǒng)計(jì)表明飲酒量與人數(shù)有很強(qiáng)的線性相關(guān)關(guān)系,下面是隨機(jī)采集的
組數(shù)據(jù)
(其中
表示飲酒人數(shù),
(升)表示飲酒量):
,
,
,
,
.
剩余酒量(單位:升) |
| ||||
結(jié)賬時(shí)的倍率 |
(1)求由這組數(shù)據(jù)得到的
關(guān)于
的回歸直線方程;
(2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了
升啤酒,這時(shí),酒吧服務(wù)生對(duì)小王說(shuō),根據(jù)他的經(jīng)驗(yàn),小王和朋友量取的啤酒可能喝不完,可以考慮再邀請(qǐng)
位或
位朋友一起來(lái)飲酒,會(huì)更劃算.試向小王是否該接受服務(wù)生的建議?
參考數(shù)據(jù):回歸直線的方程是,其中
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二面角中,
,射線
,
分別在平面
,
內(nèi),點(diǎn)A在平面
內(nèi)的射影恰好是點(diǎn)B,設(shè)二面角
、
與平面
所成角、
與平面
所成角的大小分別為
,則( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與定點(diǎn)
,動(dòng)圓
過(guò)
點(diǎn)且與圓
相切.
(1)求動(dòng)圓圓心的軌跡
的方程;
(2)若過(guò)定點(diǎn)的直線
交軌跡
于不同的兩點(diǎn)
、
,求弦長(zhǎng)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某冰糖橙,甜橙的一種,云南著名特產(chǎn),以味甜皮薄著稱。該橙按照等級(jí)可分為四類:珍品、特級(jí)、優(yōu)級(jí)和一級(jí)(每箱有5kg),某采購(gòu)商打算訂購(gòu)一批橙子銷往省外,并從采購(gòu)的這批橙子中隨機(jī)抽取100箱,利用橙子的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下表:
等級(jí) | 珍品 | 特級(jí) | 優(yōu)級(jí) | 一級(jí) |
箱數(shù) | 40 | 30 | 10 | 20 |
(1)若將頻率改為概率,從這100箱橙子中有放回地隨機(jī)抽取4箱,求恰好抽到2箱是一級(jí)品的概率:
(2)利用樣本估計(jì)總體,莊園老板提出兩種購(gòu)銷方案供采購(gòu)商參考:
方案一:不分等級(jí)賣(mài)出,價(jià)格為27元/kg;
方案二:分等級(jí)賣(mài)出,分等級(jí)的橙子價(jià)格如下:
等級(jí) | 珍品 | 特級(jí) | 優(yōu)級(jí) | 一級(jí) |
售價(jià)(元/kg) | 36 | 30 | 24 | 18 |
從采購(gòu)商的角度考慮,應(yīng)該采用哪種方案?
(3)用分層抽樣的方法從這100箱橙子中抽取10箱,再?gòu)某槿〉?/span>10箱中隨機(jī)抽取3箱,X表示抽取的是珍品等級(jí),求x的分布列及數(shù)學(xué)期望E(X).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com