日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某小店每天以每份5元的價格從食品廠購進若干份食品,然后以每份10元的價格出售.如果當天賣不完,剩下的食品還可以每份1元的價格退回食品廠處理.

          (Ⅰ)若小店一天購進16份,求當天的利潤(單位:元)關(guān)于當天需求量(單位:份,)的函數(shù)解析式;

          (Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:

          日需求量

          14

          15

          16

          17

          18

          19

          20

          頻數(shù)

          10

          20

          16

          16

          15

          13

          10

          以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

          (i)小店一天購進16份這種食品,表示當天的利潤(單位:元),求的分布列及數(shù)學(xué)期望;

          (ii)以小店當天利潤的期望值為決策依據(jù),你認為一天應(yīng)購進食品16份還是17份?

          【答案】(Ⅰ);(Ⅱ)(i)答案見解析;(ii)17份.

          【解析】試題分析

          (Ⅰ) 分兩種情況分別求得利潤,寫成分段的形式即可得到所求.(Ⅱ)(i) 由題意知的所有可能的取值為62,71,80,分別求出相應(yīng)的概率可得分布列和期望; (ii)由題意得小店一天購進17份食品時,利潤的所有可能取值為58,67,76,85,分別求得概率后可得的分布列和期望,比較的大小可得選擇的結(jié)論

          試題解析

          (Ⅰ)當日需求量時,利潤,

          當日需求量時,利潤,

          所以關(guān)于的函數(shù)解析式為

          (Ⅱ)(i)由題意知的所有可能的取值為62,71,80,

          并且,

          的分布列為:

          X

          62

          71

          80

          P

          0.1

          0.2

          0.7

          元.

          (ii)若小店一天購進17份食品,表示當天的利潤(單位:元),那么的分布列為

          Y

          58

          67

          76

          85

          P

          0.1

          0.2

          0.16

          0.54

          的數(shù)學(xué)期望為元.

          由以上的計算結(jié)果可以看出

          即購進17份食品時的平均利潤大于購進16份時的平均利潤.

          所以小店應(yīng)選擇一天購進17份.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是圓內(nèi)一個定點,是圓上任意一點.線段的垂直平分線和半徑相交于點.

          (Ⅰ)當點在圓上運動時,點的軌跡是什么曲線?并求出其軌跡方程;

          (Ⅱ)過點作直線與曲線交于、兩點,點關(guān)于原點的對稱點為,求的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個幾何體的三視圖如圖所示,則這個幾何體的體積等于______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          (1)證明:存在唯一實數(shù),使得直線和曲線相切;

          (2)若不等式有且只有兩個整數(shù)解,求的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】四棱臺被過點的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形是邊長為2的菱形,,平面.

          (Ⅰ)求證:平面平面;

          (Ⅱ)若與底面所成角的正切值為2,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,是平行四邊形,,, ,,,分別是,的中點.

          )證明:平面平面;

          )求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線y=x+b與函數(shù)f(x)=ln x的圖象交于兩個不同的點A,B,其橫坐標分別為x1,x2,x1<x2.

          (1)b的取值范圍;

          (2)x2≥2,證明x1·<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點為,上頂點為,直線與直線垂直,垂足為點,且點是線段的中點.

          I)求橢圓的方程;

          II)如圖,若直線 與橢圓交于 兩點,點在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

          【答案】I;(II

          【解析】試題分析:(1)根據(jù)題意可得, 故斜率為,由直線與直線垂直,可得,因為點是線段的中點,∴點的坐標是,

          代入直線得,連立方程即可得, ;(2)∵四邊形為平行四邊形,∴,設(shè), ,∴ ,得,將點坐標代入橢圓方程得

          到直線的距離為,利用弦長公式得EF,則平行四邊形的面積為

          .

          解析:(1)由題意知,橢圓的左頂點,上頂點,直線的斜率,

          ,

          因為點是線段的中點,∴點的坐標是,

          由點在直線上,∴,且

          解得 ,

          ∴橢圓的方程為.

          (2)設(shè), , ,

          代入消去并整理得 ,

          ∵四邊形為平行四邊形,∴

          ,將點坐標代入橢圓方程得

          到直線的距離為, ,

          ∴平行四邊形的面積為

          .

          故平行四邊形的面積為定值.

          型】解答
          結(jié)束】
          21

          【題目】已知函數(shù) .

          (1)當時,討論函數(shù)的單調(diào)性;

          (2)當時,求證:函數(shù)有兩個不相等的零點, ,且.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標系與參數(shù)方程

          在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點.

          (1)寫出曲線的直角坐標方程和直線的普通方程;

          (2),的值.

          查看答案和解析>>

          同步練習冊答案