日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}滿足:a1=1,a2=a(a>0).?dāng)?shù)列{bn}滿足bn=anan+1(n∈N*).
          (1)若{an}是等差數(shù)列,且b3=12,求a的值及{an}的通項(xiàng)公式;
          (2)若{an}是等比數(shù)列,求{bn}的前項(xiàng)和Sn
          【答案】分析:(1)先根據(jù){an}是等差數(shù)列表示出通項(xiàng)公式,再根據(jù)b3=12求得a3a4的值從而可確定a的值,求得{an}的通項(xiàng)公式.
          (2)先根據(jù){an}是等比數(shù)列表示出通項(xiàng)公式,進(jìn)而可表示出bn的表達(dá)式,根據(jù)=a2可確定數(shù)列{bn}是首項(xiàng)為a,公比為a2的等比數(shù)列,再對(duì)公比a等于1和不等于1進(jìn)行討論,即可得到最后答案.
          解答:解:(1)∵{an}是等差數(shù)列,a1=1,a2=a(a>0),∴an=1+(n-1)(a-1).
          又b3=12,∴a3a4=12,即(2a-1)(3a-2)=12,
          解得a=2或a=-
          ∵a>0,∴a=2從而an=n.
          (2)∵{an}是等比數(shù)列,a1=1,a2=a(a>0),∴an=an-1,則bn=anan+1=a2n-1
          =a2∴數(shù)列{bn}是首項(xiàng)為a,公比為a2的等比數(shù)列,
          當(dāng)a=1時(shí),Sn=n;
          當(dāng)a≠1時(shí),Sn==
          點(diǎn)評(píng):本題主要考查數(shù)列的通項(xiàng)公式的求法和數(shù)列求和.高考對(duì)數(shù)列的考查無外乎通項(xiàng)公式的求法和前n項(xiàng)和的求法,對(duì)經(jīng)常用到的常用方法要熟練掌握.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1=1且an+1=
          3+4an
          12-4an
          , n∈N*

          (1)若數(shù)列{bn}滿足:bn=
          1
          an-
          1
          2
          (n∈N*)
          ,試證明數(shù)列bn-1是等比數(shù)列;
          (2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
          (3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足
          1
          2
          a1+
          1
          22
          a2+
          1
          23
          a3+…+
          1
          2n
          an=2n+1
          則{an}的通項(xiàng)公式
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:a1=
          3
          2
          ,且an=
          3nan-1
          2an-1+n-1
          (n≥2,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
          (1)若a1=
          54
          ,求an;
          (2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
          2n-1
          2n-1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案