日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,若E、F分別為正方體ABCD—A1B1C1D1棱AB、AD的中點(diǎn),平面α過EF截正方體得一六邊形.若設(shè)平面α與底面所成的二面角為θ,則二面角θ為銳角時的取值區(qū)間是_________.

          答案:(arctan,arctan)

          解析:算出兩個“邊緣”值即可,即平面EFD1B1、平面EFC1與底面所成的角.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2.E、F分別為線段AB、D1C上的點(diǎn).
          (Ⅰ)若E、F分別為線段AB、D1C的中點(diǎn),求證:EF∥平面AD1;
          (Ⅱ)已知二面角D1-EC-D的大小為
          π6
          ,求AE的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)在空間四邊形ABCD中,如圖所示.
          (1)若E、F分別為AB、AD上的點(diǎn)且AE=
          1
          3
          AB,AF=
          1
          3
          AD,能推出EF∥平面BCD嗎?為什么?
          (2)若E、F分別是AB、AD上的任一點(diǎn),在何條件下能使EF∥平面BCD呢?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=
          2
          2
          AD
          ,若E、F分別為PC、BD的中點(diǎn).
          (Ⅰ)證明:EF∥平面PAD;
          (Ⅱ)求二面角B-PD-C的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=
          2
          2
          AD,若E、F分別為線段PC、BD的中點(diǎn).
          (1)求證:直線EF∥平面PAD;
          (2)求證:平面PDC⊥平面PAD;
          (3)線段AB上是否存在一點(diǎn)M,使二面角M-PD-C為45°.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,在正方體ABCD-A1B1C1D1中.
          (1)求A1C1與B1C所成角的大;
          (2)若E,F(xiàn)分別為AB,AD的中點(diǎn),求A1C1與EF所成角的大小.

          查看答案和解析>>

          同步練習(xí)冊答案