日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=log2
          1+x1-x

          (Ⅰ)求函數(shù)的定義域;
          (Ⅱ)判斷函數(shù)的奇偶性;
          (Ⅲ)根據(jù)函數(shù)單調(diào)性的定義,證明函數(shù)f(x)是增函數(shù).
          分析:(Ⅰ)利用對數(shù)函數(shù)的性質(zhì)確定定義域.(Ⅱ)根據(jù)函數(shù)奇偶性的定義判斷.(Ⅲ)根據(jù)函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性.
          解答:解:(Ⅰ)要使f(x)有意義,即
          1+x
          1-x
          >0,解得-1<x<1,
          所以f(x)的定義域為(-1,1)…(4分)
          (Ⅱ)因為f(x)的定義域為(-1,1),關(guān)于原點對稱,
          f(-x)=log2
          1-x
          1+x
          =log2(
          1+x
          1-x
          )
          -1
          =-log2
          1+x
          1-x
          =-f(x)

          所以f(x)為奇函數(shù).    …(8分)
          (Ⅲ)任取-1<x1<x2<1,
          則f(x1)-f(x2)=log2
          1+x1
          1-x1
          -log2
          1+x2
          1-x2
          =log2
          (1+x1)(1-x2)
          (1-x1)(1+x2)
          ,
          因為-1<x1<x2<1,
          所以0<(1+x1)(1-x2)=1+x1-x2-x1x2<1+x2-x1-x1x2=(1-x1)(1+x2),
          0<
          (1+x1)(1-x2)
          (1-x1)(1+x2)
          <1
          .所以log2
          (1+x1)(1-x2)
          (1-x1)(1+x2)
          <0

          所以f(x1)-f(x2)<0,即f(x1)<f(x2),
          故函數(shù)f(x)是增函數(shù)    …(14分)
          點評:本題主要考查了對數(shù)函數(shù)的性質(zhì),要求熟練掌握對數(shù)的運算法則和對數(shù)函數(shù)的性質(zhì).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項和為Sn,則S2012的值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點;
          (Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時,函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案