日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. f(x)=
          1
          x
          的定義域為A,g(x)=f(x+1)-f(x)的定義域為B,那么( 。
          分析:由分式的分母不等于0求出集合A,然后由x+1在集合A中求出x的取值集合,得到函數(shù)f(x+1)的定義域,和f(x)的定義域取交集得到集合B,則答案可求.
          解答:解:f(x)=
          1
          x
          的定義域為A,則A={x|x≠0},
          由x+1≠0,得x≠-1,∴函數(shù)f(x+1)的定義域為{x|x≠-1}.
          ∴g(x)=f(x+1)-f(x)的定義域為{x|x≠0,x≠-1}.
          即B={x|x≠0,x≠-1}.
          ∴B?A.
          故選:B.
          點(diǎn)評:本題考查了函數(shù)的定義域及其求法,訓(xùn)練了符合函數(shù)定義域的解法,考查了集合間的關(guān)系,是基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1
          x

          (1)若f(a)•(e-1)=
          e
          1
          f(x)dx
          ,求a的值;
          (2)t>1,是否存在a∈[1,t]使得f(a)•(t-1)=
          t
          1
          f(x)dx
          成立?并給予證明;
          (3)結(jié)合定積分的幾何意義說明(2)的幾何意義.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          問題1:已知函數(shù)f(x)=
          x
          1+x
          ,則f(
          1
          10
          )+f(
          1
          9
          )+
          +f(
          1
          2
          )+f(1)+f(2)+
          …+f(9)+f(10)=
          19
          2
          19
          2

          我們?nèi)舭衙恳粋函數(shù)值計算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運(yùn)算就較繁鎖.觀察和式,我們發(fā)現(xiàn)f(
          1
          2
          )+f(2)
          、…、f(
          1
          9
          )+f(9)
          f(
          1
          10
          )+f(10)
          可一般表示為f(
          1
          x
          )+f(x)
          =
          1
          x
          1+
          1
          x
          +
          x
          1+x
          =
          1
          1+x
          +
          x
          1+x
          =
          1+x
          1+x
          =1
          為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
          問題2:已知函數(shù)f(x)=
          1
          2x+
          2
          ,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          問題1:已知函數(shù)f(x)=
          x
          1+x
          ,則f(
          1
          10
          )+f(
          1
          9
          )+
          +f(
          1
          2
          )+f(1)+f(2)+
          …+f(9)+f(10)=______.
          我們?nèi)舭衙恳粋函數(shù)值計算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運(yùn)算就較繁鎖.觀察和式,我們發(fā)現(xiàn)f(
          1
          2
          )+f(2)
          、…、f(
          1
          9
          )+f(9)
          、f(
          1
          10
          )+f(10)
          可一般表示為f(
          1
          x
          )+f(x)
          =
          1
          x
          1+
          1
          x
          +
          x
          1+x
          =
          1
          1+x
          +
          x
          1+x
          =
          1+x
          1+x
          =1
          為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
          問題2:已知函數(shù)f(x)=
          1
          2x+
          2
          ,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=
          1
          x

          (1)若f(a)•(e-1)=
          e1
          f(x)dx
          ,求a的值;
          (2)t>1,是否存在a∈[1,t]使得f(a)•(t-1)=
          t1
          f(x)dx
          成立?并給予證明;
          (3)結(jié)合定積分的幾何意義說明(2)的幾何意義.

          查看答案和解析>>

          同步練習(xí)冊答案