已知橢圓的四個(gè)頂點(diǎn)恰好是一邊長(zhǎng)為2,一內(nèi)角為
的菱形的四個(gè)頂點(diǎn).
(I)求橢圓的方程;
(II)直線與橢圓
交于
,
兩點(diǎn),且線段
的垂直平分線經(jīng)過點(diǎn)
,求
(
為原點(diǎn))面積的最大值.
(I) ; (II)
.
【解析】
試題分析:(I)由圖形的對(duì)稱性及橢圓的幾何性質(zhì),易得 ,進(jìn)而寫出方程; (II) ΔAOB的面積可以用
,所以本題需要用弦長(zhǎng)公式表示AB的長(zhǎng)度,用點(diǎn)到之間的距離公式表示坐標(biāo)原點(diǎn)O到直線的距離,而這些都需要有直線的方程作為前提條件。所以本題應(yīng)先考慮設(shè)出直線AB的方程.此外,設(shè)方程的過程中,注意對(duì)于特殊情形的討論.
試題解析:
(I)因?yàn)闄E圓的四個(gè)頂點(diǎn)恰好是一邊長(zhǎng)為2,
一內(nèi)角為 的菱形的四個(gè)頂點(diǎn),
所以,橢圓
的方程為
4分
(II)設(shè)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013091501110397954189/SYS201309150112468695542261_DA.files/image012.png">的垂直平分線通過點(diǎn)
, 顯然直線
有斜率,
當(dāng)直線的斜率為
時(shí),則
的垂直平分線為
軸,則
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013091501110397954189/SYS201309150112468695542261_DA.files/image018.png">,
所以,當(dāng)且僅當(dāng)
時(shí),
取得最大值為
7分
當(dāng)直線的斜率不為
時(shí),則設(shè)
的方程為
所以,代入得到
當(dāng),
即
方程有兩個(gè)不同的解
又,
8分
所以,
又,化簡(jiǎn)得到
代入,得到
10分
又原點(diǎn)到直線的距離為
所以
化簡(jiǎn)得到
12分
因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013091501110397954189/SYS201309150112468695542261_DA.files/image035.png">,所以當(dāng)時(shí),即
時(shí),
取得最大值
綜上,面積的最大值為
.
考點(diǎn):直線與圓錐曲線的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的四個(gè)頂點(diǎn)恰好是一邊長(zhǎng)為2,一內(nèi)角為60°的菱形的四個(gè)頂點(diǎn).
(Ⅰ)求橢圓M的方程;
(Ⅱ)直線l與橢圓M交于A,B兩點(diǎn),且線段AB的垂直平分線經(jīng)過點(diǎn),求△AOB(O為原點(diǎn))面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的四個(gè)頂點(diǎn)恰好是一邊長(zhǎng)為2,一內(nèi)角為60°的菱形的四個(gè)頂點(diǎn).
(Ⅰ)求橢圓M的方程;
(Ⅱ)直線l與橢圓M交于A,B兩點(diǎn),且線段AB的垂直平分線經(jīng)過點(diǎn),求△AOB(O為原點(diǎn))面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市汶上一中高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年北京市海淀區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com