日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,且異面直線A1B與B1C1所成的角等于60°,設(shè)AA1=a.
          (1)求a的值;
          (2)求平面A1BC1與平面B1BC1所成的銳二面角的大小.
          分析:(1)將B1C1平移到BC,∠A1BC就是異面直線A1B與B1C1所成的角,在三角形A1BA內(nèi)建立等式,解之即可;
          (2)取A1B的中點(diǎn)E,連接B1E,過E作EF⊥BC1于F,連接B1F,B1E⊥A1B,A1C1⊥B1E,得到∠B1FE就是平面A1BC1與平面B1BC1所成的銳二面角的平面角,在△B1EF中解出此角即可.
          解答:精英家教網(wǎng)解:(1)∵BC∥B1C1,∴∠A1BC就是異面直線A1B與B1C1所成的角,
          即∠A1BC=60°,(2分)
          連接A1C,又AB=AC,則A1B=A1C∴△A1BC為等邊三角形,(4分)
          由AB=AC=1,∠BAC=90°?BC=
          2
          ,
          A1B=
          2
          ?
          1+a2
          =
          2
          ?a=1
          ;(6分)
          (2)取A1B的中點(diǎn)E,連接B1E,過E作EF⊥BC1于F,
          連接B1F,B1E⊥A1B,A1C1⊥B1E?B1E⊥平面A1BC1?B1E⊥BC1
          又EF⊥BC1,所以BC1⊥平面B1EF,即B1F⊥BC1,
          所以∠B1FE就是平面A1BC1與平面B1BC1所成的銳二面角的平面角.(8分)
          在△B1EF中,∠B1EF=90°,B1E=
          2
          2
          B1F=
          2
          3
          ,∴sin∠B1FE=
          B1E
          B1F
          =
          3
          2
          ?∠B1FE=60°,(10分)
          因此平面A1BC1與平面B1BC1所成的銳二面角的大小為60°.
          點(diǎn)評:本題主要考查了平面與平面之間的位置關(guān)系,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中點(diǎn).
          (Ⅰ)求證:CD⊥AB′;
          (Ⅱ)求二面角A′-AB′-C的大;
          (Ⅲ)求直線B′D與平面AB′C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•瀘州一模)如圖,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
          2
          a
          ,則AB′與側(cè)面AC′所成角的大小為
          30°
          30°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有兩個動點(diǎn)E,F(xiàn),且EF=a (a為常數(shù)).
          (Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;
          (Ⅱ)判斷三棱錐B-CEF的體積是否為定值.若是定值,求出這個三棱錐的體積;若不是定值,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
          (1)求證:A′B⊥面AB′C;
          (2)求二面角B-B′C-A的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,點(diǎn)D是BC的中點(diǎn),∠ACB=90°,AC=BC=1,AA′=2,
          (1)欲過點(diǎn)A′作一截面與平面AC'D平行,問應(yīng)當(dāng)怎樣畫線,寫出作法,并說明理由;
          (2)求異面直線BA′與 C′D所成角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案