日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (08年溫州八校適應(yīng)性考試三理)  (16分)    已知函數(shù),其中為實常數(shù),設(shè)為自然對數(shù)的底數(shù).

             (Ⅰ)當(dāng)時,求的極值;

             (Ⅱ)若在區(qū)間上的最大值為-3,求的值;

             (III)當(dāng)時,試推斷方程 是否有實數(shù)解.

          解析:(Ⅰ)   …………(2分)

          ,則

          當(dāng)時,;當(dāng)

          故有極大值…………(4分)

          (Ⅱ)∵=a+,x∈(0,e),∈[,+∞

             (1)若a≥-,則≥0,從而f(x)在(0,e)上增函數(shù).

              ∴f(x)max =f(e)=ae+1≥0.不合題意. …………………………………7分

             (2)若a<-, >0a+>0,即0<x<-

              由a+<0,即-<xe.

              ∴f(x)=f(-)=-1+ln(-).

              令-1+ln(-)=-3,則ln(-)=-2.∴-=e,

              即a=-e2. ∵-e2<-,∴a=-e2為所求. ……………………………10分

            (Ⅲ)

              由Ⅰ)結(jié)論,=f(1)=-1.∴f(x)=-x+lnx≤-1,從而lnxx-1.

              令g(x)=|f(x)|-=x-lnx=x-(1+)lnx-……12分

             (1)當(dāng)0<x<2時,有g(shù)(x)≥x-(1+)(x-1)-=>0.

             (2)當(dāng)x≥2時,g′(x)=1-[(-)lnx+(1+)?]=

                             =.

              ∴g(x)在[2,+∞上增函數(shù),∴g(x)≥g(2)=

              綜合(1)、(2)知,當(dāng)x>0時,g(x)>0,即|f(x)|>.

              故原方程沒有實解.                       ………………………………16分

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (08年溫州八校適應(yīng)性考試三文) (16分) 設(shè)函數(shù).

              (1)當(dāng).求函數(shù)的單調(diào)區(qū)間、極值;

              (2) 當(dāng)時,討論方程的根的個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (08年溫州八校適應(yīng)性考試三) (14分) 過兩定點,分別作兩動直線,此兩動直線在軸上的截距分別為,且為常數(shù))

          (Ⅰ)求兩動直線交點的軌跡C的方程

          (Ⅱ)直線與軌跡C的兩個交點為P、Q,為何值時,線段PQ的長為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (08年溫州八校適應(yīng)性考試三) (14分)如圖,正三棱柱中,中點.AB=2

          (Ⅰ)求證://平面;

          (Ⅱ) 當(dāng)為何值時,二面角的正弦值為?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (08年溫州八校適應(yīng)性考試三) (14分)某選手在電視搶答賽中答對每道題的概率都是,答錯每道題的概率都是,答對一道題積1分,答錯一道題積-1分,答完n道題后的總積分記為Sn

             (Ⅰ)答完2道題后,求同時滿足S1=1且S2≥0的概率;

             (Ⅱ)答完3道題后,設(shè)ξ=S3,求ξ的分布列及其數(shù)學(xué)期望

          查看答案和解析>>

          同步練習(xí)冊答案