日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為,的極坐標(biāo)方程為.

          1)求直線的普通方程與圓的直角坐標(biāo)方程;

          2)設(shè)曲線與直線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,的值.

          【答案】1)直線的普通方程為: ,C的直角坐標(biāo)方程為;(2

          【解析】試題分析:(1)消去參數(shù)可得直線的普通方程,由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)直線的參數(shù)方程是過點(diǎn)的標(biāo)準(zhǔn)參數(shù)方程,因此把直線參數(shù)方程代入圓的直角坐標(biāo)方程,方程的解,則,由韋達(dá)定理可得.

          試題解析:(1)直線的普通方程為: ,

          ,所以

          所以曲線C的直角坐標(biāo)方程為(或?qū)懗?/span>)..

          2)點(diǎn)P21)在直線上,且在圓C內(nèi),把代入,,設(shè)兩個(gè)實(shí)根為,,即異號(hào).

          所以.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程是(θ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為:

          (1)求曲線C的極坐標(biāo)方程;

          (2)設(shè)直線θ=與直線l交于點(diǎn)M,與曲線C交于P,Q兩點(diǎn),已知|OM||OP||OQ)=10,求t的值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線與二次曲線4個(gè)不同的交點(diǎn),由下面的草圖可以看出,下面三個(gè)結(jié)論是成立的,請(qǐng)給出證明.

          (1).兩曲線的4個(gè)交點(diǎn)中,至少有兩個(gè)交點(diǎn)位于軸的下方;

          (2).拋物線必與軸有兩個(gè)不同的交點(diǎn),記為;

          (3).兩曲線的4個(gè)交點(diǎn)中,必存在一點(diǎn),使.

          .對(duì)、、的不同取值會(huì)有無數(shù)個(gè)圖形,此處僅就,各給出一個(gè)示意圖,同時(shí)也就限制由圖看出的解答.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直三棱柱ABCA1B1C1中(側(cè)棱與底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1,D A1B1的中點(diǎn).

          (1)求證:C1D平面AA1B1B;

          (2)當(dāng)點(diǎn)F BB1上的什么位置時(shí),AB1平面C1DF ?并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校為倡導(dǎo)全體學(xué)生為特困學(xué)生捐款,舉行一元錢,一片心,誠信用水活動(dòng),學(xué)生在購水處每領(lǐng)取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢現(xiàn)統(tǒng)計(jì)了連續(xù)5天的售出和收益情況,如下表:

          售出水量x(單位:箱)

          7

          6

          6

          5

          6

          收益y(單位:元)

          165

          142

          148

          125

          150

          (Ⅰ) 若xy成線性相關(guān),則某天售出8箱水時(shí),預(yù)計(jì)收益為多少元?

          (Ⅱ) 期中考試以后,學(xué)校決定將誠信用水的收益,以獎(jiǎng)學(xué)金的形式獎(jiǎng)勵(lì)給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生考入年級(jí)前200名,獲一等獎(jiǎng)學(xué)金500元;考入年級(jí)201—500 名,獲二等獎(jiǎng)學(xué)金300元;考入年級(jí)501名以后的特困生將不獲得獎(jiǎng)學(xué)金。甲、乙兩名學(xué)生獲一等獎(jiǎng)學(xué)金的概率均為,獲二等獎(jiǎng)學(xué)金的概率均為,不獲得獎(jiǎng)學(xué)金的概率均為.

          ⑴在學(xué)生甲獲得獎(jiǎng)學(xué)金條件下,求他獲得一等獎(jiǎng)學(xué)金的概率;

          ⑵已知甲、乙兩名學(xué)生獲得哪個(gè)等第的獎(jiǎng)學(xué)金是相互獨(dú)立的,求甲、乙兩名學(xué)生所獲得獎(jiǎng)學(xué)金總金額X 的分布列及數(shù)學(xué)期望。

          附: 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱錐的三條側(cè)棱兩兩垂直,,分別是棱的中點(diǎn).

          (1)證明:平面平面;

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)為實(shí)數(shù).

          (1)當(dāng)時(shí),求的最小值;

          (2)若存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)都有成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】19的九個(gè)數(shù)字中取三個(gè)偶數(shù)四個(gè)奇數(shù),試問:

          ①能組成多少個(gè)沒有重復(fù)數(shù)字的七位數(shù)?

          ②上述七位數(shù)中三個(gè)偶數(shù)排在一起的有幾個(gè)?

          ③在①中的七位數(shù)中,偶數(shù)排在一起、奇數(shù)也排在一起的有幾個(gè)?

          ④在①中任意兩偶數(shù)都不相鄰的七位數(shù)有幾個(gè)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)、為平面上兩個(gè)點(diǎn)集,滿足,,且任意三點(diǎn)不共線.在集合間各連若干條線段,每條線段均一個(gè)端點(diǎn)在集合中,另一個(gè)端點(diǎn)在集合中,且任意兩點(diǎn)間至多連一條線段,記所有線段構(gòu)成的集合為.若集合滿足對(duì)于集合中任意一點(diǎn)均至少連出條線段,則稱集合一好的”.試確定的最大值,使得去掉任意一條線段,集合均不是一好的.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案