日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知橢圓C: =1(a>b>0)的離心率為 ,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.

          (1)求橢圓C的方程;
          (2)求 的最小值,并求此時(shí)圓T的方程;
          (3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:|OR||OS|為定值.

          【答案】
          (1)解:依題意,得a=2, ,

          ∴c= ,b= =1,

          故橢圓C的方程為


          (2)解:方法一:點(diǎn)M與點(diǎn)N關(guān)于x軸對(duì)稱(chēng),

          設(shè)M(x1,y1),N(x1,﹣y1),不妨設(shè)y1>0.

          由于點(diǎn)M在橢圓C上,所以 (*)

          由已知T(﹣2,0),則 ,

          =(x1+2)2

          =

          =

          由于﹣2<x1<2,

          故當(dāng) 時(shí), 取得最小值為

          由(*)式, ,故 ,

          又點(diǎn)M在圓T上,代入圓的方程得到

          故圓T的方程為:

          方法二:點(diǎn)M與點(diǎn)N關(guān)于x軸對(duì)稱(chēng),

          故設(shè)M(2cosθ,sinθ),N(2cosθ,﹣sinθ),

          不妨設(shè)sinθ>0,由已知T(﹣2,0),

          =(2cosθ+2)2﹣sin2θ

          =5cos2θ+8cosθ+3

          =

          故當(dāng) 時(shí), 取得最小值為

          此時(shí) ,

          又點(diǎn)M在圓T上,代入圓的方程得到

          故圓T的方程為:


          (3)解:方法一:設(shè)P(x0,y0),

          則直線MP的方程為: ,

          令y=0,得

          同理: ,

          (**)

          又點(diǎn)M與點(diǎn)P在橢圓上,

          , ,

          代入(**)式,

          得:

          所以|OR||OS|=|xR||xS|=|xRxS|=4為定值.

          方法二:設(shè)M(2cosθ,sinθ),N(2cosθ,﹣sinθ),

          不妨設(shè)sinθ>0,P(2cosα,sinα),其中sinα≠±sinθ.

          則直線MP的方程為: ,

          令y=0,得 ,

          同理: ,

          所以|OR||OS|=|xR||xS|=|xRxS|=4為定值


          【解析】(1)依題意,得a=2, ,由此能求出橢圓C的方程.(2)法一:點(diǎn)M與點(diǎn)N關(guān)于x軸對(duì)稱(chēng),設(shè)M(x1 , y1),N(x1 , ﹣y1),設(shè)y1>0.由于點(diǎn)M在橢圓C上,故 .由T(﹣2,0),知 = ,由此能求出圓T的方程.
          法二:點(diǎn)M與點(diǎn)N關(guān)于x軸對(duì)稱(chēng),故設(shè)M(2cosθ,sinθ),N(2cosθ,﹣sinθ),設(shè)sinθ>0,由T(﹣2,0),得 = ,由此能求出圓T的方程.(3)法一:設(shè)P(x0 , y0),則直線MP的方程為: ,令y=0,得 ,同理: ,…故 ,由此能夠證明|OR||OS|=|xR||xS|=|xRxS|=4為定值.
          法二:設(shè)M(2cosθ,sinθ),N(2cosθ,﹣sinθ),設(shè)sinθ>0,P(2cosα,sinα),其中sinα≠±sinθ.則直線MP的方程為: ,由此能夠證明|OR||OS|=|xR||xS|=|xRxS|=4為定值.
          【考點(diǎn)精析】掌握?qǐng)A的標(biāo)準(zhǔn)方程和橢圓的標(biāo)準(zhǔn)方程是解答本題的根本,需要知道圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程;橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】電容器充電后,電壓達(dá)到100 V,然后開(kāi)始放電,由經(jīng)驗(yàn)知道,此后電壓U隨時(shí)間t變化的規(guī)律用公式U=Aebt(b<0)表示,現(xiàn)測(cè)得時(shí)間t(s)時(shí)的電壓U(V)如下表:

          t(s)

          0

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          U(V)

          100

          75

          55

          40

          30

          20

          15

          10

          10

          5

          5

          試求:電壓U對(duì)時(shí)間t的回歸方程.(提示:對(duì)公式兩邊取自然對(duì)數(shù),把問(wèn)題轉(zhuǎn)化為線性回歸分析問(wèn)題)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C:(a>b>0)的左焦點(diǎn)為F,C與過(guò)原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF,BF.若,,cos ∠ABF=,則C的離心率為(  )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知f(x)=3sinx﹣πx,命題p:x∈(0, ),f(x)<0,則(
          A.p是假命題,¬p:?x∈(0, ),f(x)≥0
          B.p是假命題,¬p:?x0∈(0, ),f(x0)≥0
          C.p是真命題,¬p:?x∈(0, ),f(x)>0
          D.p是真命題,¬p:?x0∈(0, ),f(x0)≥0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=ln x-mx+n,m,n∈R.

          (1)若函數(shù)f(x)的圖像在點(diǎn)(1,f(1))處的切線為y=2x-1,求m,n的值;

          (2)求函數(shù)f(x)的單調(diào)區(qū)間;

          (3)若n=0,不等式f(x)+m<0對(duì)x∈(1,+∞)恒成立,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司經(jīng)營(yíng)一批進(jìn)價(jià)為每件400元的商品,在市場(chǎng)調(diào)查時(shí)發(fā)現(xiàn),此商品的銷(xiāo)售單價(jià)x(元)與日銷(xiāo)售量y(件)之間的關(guān)系如下表所示:

          x/元

          500

          600

          700

          800

          900

          y/件

          10

          8

          9

          6

          1

          (1)求y關(guān)于x的回歸直線方程.

          (2)借助回歸直線方程,預(yù)測(cè)銷(xiāo)售單價(jià)為多少元時(shí),日利潤(rùn)最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=ax3+bx+2在x=2處取得極值-14.

          (1)求a,b的值;

          (2)若f(x)≥kx在上恒成立,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=sinx﹣xcosx.
          (1)討論f(x)在(0,2π)上的單調(diào)性;
          (2)若關(guān)于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有兩個(gè)根,求實(shí)數(shù)m的取值范圍.
          (3)求證:當(dāng)x∈(0, )時(shí),f(x)< x3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】給出如下四個(gè)說(shuō)法

          已知pq都是命題,若pq為假命題,則p,q均為假命題;

          命題a>b,則3a>3b-1”的否命題為ab,則3a≤3b-1”;

          命題xR,x2+1≥0”的否定是x0R,+1<0”;

          a≥0”x0R,a+x0+1≥0”的充分必要條件

          其中正確說(shuō)法的序號(hào)是 ( )

          A. ①③ B. ②③ C. ②③④ D. ②④

          查看答案和解析>>

          同步練習(xí)冊(cè)答案