日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. AnBn分別表示數(shù)列{an}{bn}n項(xiàng)的和,對(duì)任意正整數(shù)n,an=,4Bn12An=13n.

          1)求數(shù)列{bn}的通項(xiàng)公式;

          2)設(shè)有拋物線列C1C2,Cn,拋物線CnnN*)的對(duì)稱軸平行于y軸,頂點(diǎn)為(an,bn),且通過(guò)點(diǎn)Dn0,n2+1),求點(diǎn)Dn且與拋物線Cn相切的直線斜率為kn,求極限.

          3)設(shè)集合X={x|x=2annN*},Y={y|y=4bn,nN*}.若等差數(shù)列{Cn}的任一項(xiàng)CnXY,C1XY中的最大數(shù),且-265<C10<125.{Cn}的通項(xiàng)公式.

           

          答案:
          解析:

          解:(1)∵a1=-anan1=-

          ∴數(shù)列{an}是以-為首項(xiàng),-1為公差的等差數(shù)列.

          An=

          由4Bn-12An=13n,得Bn=

          bn=BnBn1=-

          (2)設(shè)拋物線Cn的方程為y=ax+2

          y=x2+(2n+3)x+n2+1

          y′=2x+(2n+3),∴Dn處切線斜率kn=2n+3.

          (3)對(duì)任意nN*,2an=-2n-3,4bn=-12n-5=-2(6n+1)-3∈X

          yX,故可得XY=Y.

          c1XY中最大的數(shù),∴c1=-17

          設(shè)等差數(shù)列{cn}的公差為d,則c10=-17+9d

          ∵-265<-17+9d<-125得-27<d<-12

          而{4bn}是一個(gè)以-12為公差的等差數(shù)列.

          d=-12mmN*),∴d=-24

          cn=7-24nnN*

           


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

          AnBn分別表示數(shù)列{an}{bn}n項(xiàng)的和,對(duì)任意正整數(shù)nan=,4Bn12An=13n.

          1)求數(shù)列{bn}的通項(xiàng)公式;

          2)設(shè)有拋物線列C1,C2,,Cn拋物線CnnN*)的對(duì)稱軸平行于y軸,頂點(diǎn)為(an,bn),且通過(guò)點(diǎn)Dn0n2+1),求點(diǎn)Dn且與拋物線Cn相切的直線斜率為kn,求極限.

          3)設(shè)集合X={x|x=2an,nN*},Y={y|y=4bnnN*}.若等差數(shù)列{Cn}的任一項(xiàng)CnXY,C1XY中的最大數(shù),且-265<C10<125.{Cn}的通項(xiàng)公式.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          AnBn分別表示數(shù)列{an}和{bn}的前n項(xiàng)和,對(duì)任何正整數(shù)n,an=-,4Bn-12An=13n.

          (1)求數(shù)列{bn}的通項(xiàng)公式;

          (2)設(shè)有拋物線列C1,C2,…,Cn,…,拋物線Cn(nN*)的對(duì)稱軸平行于y軸,頂點(diǎn)為(an,bn),且通過(guò)點(diǎn)Dn(0,n2+1),過(guò)點(diǎn)Dn且與拋物線Cn相切的直線的斜率為kn,求極限.

          (3)設(shè)集合X={x|x=2an,nN*},Y={y|y=4bn,nN*},若等差數(shù)列{Cn}的任一項(xiàng)Cn∈X∩Y,C1是X∩Y中的最大數(shù),且-265<C10<-125,求{Cn}的通項(xiàng)公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若An和Bn分別表示數(shù)列{an}和{bn}的前n項(xiàng)和,對(duì)任意正整數(shù)n,an =-,4Bn-12An=13n.

           

          (1)求數(shù)列{bn}的通項(xiàng)公式;

           

          (2)設(shè)有拋物線列c1、c2、…cn、…,拋物線cn(n∈N)的對(duì)稱軸平行于y軸,頂點(diǎn)為(an,bn),且通過(guò)點(diǎn)Dn(0,n2+1),過(guò)點(diǎn)Dn且與拋物線cn相切的直線斜率為kn,求極限;

           

          (3)設(shè)集合X={x|x=2an,n∈N},Y={y|y=4bn,n∈N}.若等差數(shù)列{cn}的任一項(xiàng)cn∈X∩Y,

          c1是X∩Y中的最大數(shù),且-265<c10<-125,求{cn}的通項(xiàng)公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若An和Bn分別表示數(shù)列{an}和{bn}的前n項(xiàng)和,對(duì)任意正整數(shù)n,an =-,4Bn-12An=13n.

           

          (1)求數(shù)列{bn}的通項(xiàng)公式;

           

          (2)設(shè)有拋物線列c1、c2、…cn、…,拋物線cn(n∈N)的對(duì)稱軸平行于y軸,頂點(diǎn)為(an,bn),且通過(guò)點(diǎn)Dn(0,n2+1),過(guò)點(diǎn)Dn且與拋物線cn相切的直線斜率為kn,求極限;

           

          (3)設(shè)集合X={xx=2an,n∈N},Y={y|y=4bn,n∈N}.若等差數(shù)列{cn}的任一項(xiàng)cn∈X∩Y, c1是X∩Y中的最大數(shù),且-265<c10<-125,求{cn}的通項(xiàng)公式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案