日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在如圖1所示的等腰梯形ABCD中,AB∥CD,且,E為CD中點.若沿AE將三角形DAE折起,使平面DAE⊥平面ABCE,連接DB,DC,得到如圖2所示的幾何體D-ABCE,在圖2中解答以下問題:
          (Ⅰ)設F為AB中點,求證:DF⊥AC;
          (Ⅱ)求二面角A-BD-C的正弦值.

          【答案】分析:(Ⅰ)取AE中點H,連接HF,連接EB,利用面面垂直,證明線面垂直,即DH⊥平面ABCE,進一步證明AC⊥平面DHF,從而可得線線垂直;
          (Ⅱ)建立空間直角坐標系,求出面DCB的法向量,面DAB的法向量,利用向量的夾角公式,可得二面角A-BD-C的正弦值.
          解答:(Ⅰ)證明:取AE中點H,連接HF,連接EB
          因為△DAE為等邊三角形,所以DH⊥AE
          因為平面DAE⊥平面ABCE,平面DAE∩平面ABCE=AE
          所以DH⊥平面ABCE,
          因為AC?平面ABCE
          所以AC⊥DH…(2分)
          因為ABCE為平行四邊形,CE=BC=a
          所以ABCE為菱形,所以AC⊥BE
          因為H、F分別為AE、AB中點,所以HF∥BE
          所以AC⊥HF…(4分)
          因為HF?平面DHF,DH?平面DHF,且HF∩DH=H
          所以AC⊥平面DHF,又DF?平面DHF
          所以DF⊥AC…(6分)
          (Ⅱ)解:連接BH,EB
          由題意得三角形ABE為等邊三角形,所以BH⊥AE
          由(Ⅰ)知DH⊥底面ABCE以H為原點,分別以HA,HB,HD所在直線為x,y,z軸
          建立空間直角坐標系,如圖所示

          所以,
          設面DCB的法向量為,則
          不妨設…(8分)
          設面DAB的法向量,又
          ,取…(10分)
          所以
          所以二面角A-BD-C的正弦值為…(12分)
          點評:本題看下線面垂直,考查線線垂直,考查面面角,考查利用空間向量解決空間角問題,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          在如圖1所示的等腰梯形ABCD中,AB∥CD,AB=AD=BC=
          12
          CD=a
          ,E為CD中點.若沿AE將三角形DAE折起,并連接DB,DC,得到如圖2所示的幾何體D-ABCE,在圖2中解答以下問題:

          (Ⅰ)設G為AD中點,求證:DC∥平面GBE;
          (Ⅱ)若平面DAE⊥平面ABCE,且F為AB中點,求證:DF⊥AC.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在如圖1所示的等腰梯形ABCD中,AB∥CD,且AB=AD=BC=
          12
          CD=a
          ,E為CD中點.若沿AE將三角形DAE折起,使平面DAE⊥平面ABCE,連接DB,DC,得到如圖2所示的幾何體D-ABCE,在圖2中解答以下問題:
          (Ⅰ)設F為AB中點,求證:DF⊥AC;
          (Ⅱ)求二面角A-BD-C的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          在如圖1所示的等腰梯形ABCD中,AB∥CD,數(shù)學公式,E為CD中點.若沿AE將三角形DAE折起,并連接DB,DC,得到如圖2所示的幾何體D-ABCE,在圖2中解答以下問題:

          (Ⅰ)設G為AD中點,求證:DC∥平面GBE;
          (Ⅱ)若平面DAE⊥平面ABCE,且F為AB中點,求證:DF⊥AC.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年山東省年高考數(shù)學壓軸卷(文科)(解析版) 題型:解答題

          在如圖1所示的等腰梯形ABCD中,AB∥CD,,E為CD中點.若沿AE將三角形DAE折起,并連接DB,DC,得到如圖2所示的幾何體D-ABCE,在圖2中解答以下問題:

          (Ⅰ)設G為AD中點,求證:DC∥平面GBE;
          (Ⅱ)若平面DAE⊥平面ABCE,且F為AB中點,求證:DF⊥AC.

          查看答案和解析>>

          同步練習冊答案