日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,已知F是線段BD的中點(diǎn).
          (Ⅰ)試在棱D1D上確定一點(diǎn)E,使得EF⊥B1C;
          (Ⅱ)在(Ⅰ)的條件下,求三棱錐B1-EFC的體積.
          分析:(1)當(dāng)點(diǎn)E為棱DD1的中點(diǎn)時(shí),會(huì)使得EF⊥B1C,下面用下面垂直來(lái)證明即可;
          (2)先由已知結(jié)合(1)得出垂直關(guān)系,再由幾何關(guān)系求出三棱錐的底面和高,代公式可求.
          解答:解:(1)當(dāng)點(diǎn)E為棱DD1的中點(diǎn)時(shí),會(huì)使得EF⊥B1C.下面證明:…(2分)
          ∵E、F分別為棱DD1、BD的中點(diǎn),∴EF∥BD1,…(3分)
          ∵B1C⊥BC1,B1C⊥C1D1,又BC1∩C1D1=C1,∴B1C⊥平面BC1D1,∴B1C⊥BD1
          同理可得B1C⊥BD,又BD∩BD1=B,
          故BD1⊥平面AB1C,所以B1C⊥BD1…(5分)
          即EF⊥B1C;…(6分)
          (2)由(1)可知:EF⊥B1C,又EF⊥FC,故EF⊥平面B1CF,
          又EF=
          1
          2
          BD1=
          3
          .…(7分)
          CF=
          2
          ,B1C=2
          2
          ,B1F=
          6
          ,滿足勾股定理…(8分)
          SB1CF=
          1
          2
          ×
          2
          ×
          6
          =
          3
          .…(10分)
          故三棱錐B1-EFC的體積為V=
          1
          3
          ×
          3
          ×
          3
          =1.…(13分)
          點(diǎn)評(píng):本題以正方體為載體考查線面垂直的證明以及三棱錐體積的求解,屬中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn),那么異面直線OE和FD1所成的角的余弦值等于(  )
          A、
          10
          5
          B、
          15
          5
          C、
          4
          5
          D、
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在棱長(zhǎng)為2的正方體AC1中,G是AA1的中點(diǎn),則BD到平面GB1D1的距離是( 。
          A、
          6
          3
          B、
          2
          6
          3
          C、
          2
          3
          3
          D、
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (理科)如圖,在棱長(zhǎng)為1的正方體A'C中,過(guò)BD及B'C'的中點(diǎn)E作截面BEFD交C'D'于F.
          (1)求截面BEFD與底面ABCD所成銳二面角的大;
          (2)求四棱錐A'-BEFD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2007•上海)如圖,在棱長(zhǎng)為2的正方體ABCD-A'B'C'D'中,E,F(xiàn)分別是A'B'和AB的中點(diǎn),求異面直線A'F與CE所成角的大小 (結(jié)果用反三角函數(shù)值表示).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:黑龍江省鶴崗一中2010-2011學(xué)年高一下學(xué)期期末考試數(shù)學(xué)理科試題 題型:013

          在棱長(zhǎng)為2的正方體A中,點(diǎn)E,F(xiàn)分別是棱AB,BC的中點(diǎn),則點(diǎn)到平面EF的距離是

          [  ]

          A.

          B.

          C.

          D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案