日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 下列說法中:
          ①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
          ②若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則數(shù)學公式
          ③定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
          ④對于函數(shù)數(shù)學公式,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
          正確的個數(shù)為


          1. A.
            1個
          2. B.
            2個
          3. C.
            3個
          4. D.
            4個
          A
          分析:依據(jù)相關(guān)函數(shù)的性質(zhì)逐一進行判斷證明,判斷每個命題的正誤.①變形判斷其以6為周期,②分離出a來,利用恒成立求其范圍;③根據(jù)有界函數(shù)的定義進行判斷,確定f(x)=x2+1的性質(zhì);④先驗證前幾個函數(shù)的表達式,找出同期再計算求值.
          解答:①由題設(shè)定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),得f(x+2)=-f(x-1)=f(x-4),故周期是6,正確.
          ②對于任意x∈(1,3),不等式x2-ax+2<0恒成立,即a>x+對于任意x∈(1,3)恒成立,x+≥2等號當且僅當x==時成立,又當x=1,x+=3,x=3,x+=,故a≥故不對.
          ③若命題成立,則必有M≥|x|+,x∈R恒成立,這是不可能的,故不對.
          ④由題設(shè)f2(x)=-,f3(x)=,f4(x)=,f5(x)=f6(x)=-x,f7(x)=f3(x)=,故從f3(x)開始組成了一個以f3(x)為首項,以周期為4重復(fù)出現(xiàn),由2009=3+501*4+2得f2009(x)=f5(x),故=x整理得,x2+2x-1=0,有解,故不對.
          綜上,僅有①正確
          故應(yīng)選A.
          點評:考查同期性,恒成立求參數(shù),利用周期性求值,新定義函數(shù)的正確性驗證,本題作為一個選擇題運算量太大,且變形技巧性強,實為得分不易之題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          下列說法中正確的命題代號為
           

          ①f(x)為奇函數(shù),則f(0)=0;
          ②定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是單調(diào)增函數(shù),在區(qū)間[0,+∞)上也是單調(diào)增函數(shù),則函數(shù)f(x)在R上是單調(diào)增函數(shù);
          ③a,b,c都是不等于1的正數(shù)且ab≠1,則alogcb=blogca;
          ④定義在R上的函數(shù)f(x)若f(2)≠f(-2),則函數(shù)f(x)不是偶函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)定義在R上的函數(shù)f(x)=
          1
          |x+3|
              x≠-3
          1           x=-3
          ,若關(guān)于x的方程f2(x)+af(x)+b=0有3個不同實數(shù)解x1、x2、x3,且x1<x2<x3,則下列說法中錯誤的是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          下列說法中:
          ①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
          ②f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
          ③若函數(shù)f(x)=|2x+a|的單調(diào)遞增區(qū)間是[3,+∞),則a=-6;
          ④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),則f(x)是奇函數(shù).
          其中正確說法的序號是
          ①③④
          ①③④
          (注:把你認為是正確的序號都填上).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          下列說法中:
          ①函數(shù)f(x)=
          x-1
          x+1
          與g(x)=x的圖象沒有公共點;
          ②若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
          ③若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
          11
          3
          ;
          ④定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函.
          則其中正確的個數(shù)為
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•新疆模擬)設(shè)定義在R上的函數(shù)f(x)=
          1
          |x-2|
              (x≠2)
          1              (x=2)
          ,若關(guān)于x的方程f2(x)+af(x)+b=3有三個不同實數(shù)解,x1,x2,x3,
          且x1<x2<x3,則下列說法中正確的是( 。

          查看答案和解析>>

          同步練習冊答案