日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若存在x使不等式>成立,實(shí)數(shù)m的取值范圍( )

          A B C D

           

          【答案】

          C

          【解析】

          試題分析:>得:,令,則.

          ,所以,選C.

          考點(diǎn):導(dǎo)數(shù)與不等式.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•湖北模擬)函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為正常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.
          (1)求a的值;
          (2)若存在x使不等式
          x-m
          f(x)
          x
          成立,求實(shí)數(shù)m的取值范圍;
          (3)對(duì)于函數(shù)y=f(x)和y=g(x)公共定義域中的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=aex和g(x)=lnx-lna的圖象與坐標(biāo)軸的交點(diǎn)分別是點(diǎn)A,B,且以點(diǎn)A,B為切點(diǎn)的切線互相平行.
          (Ⅰ)求實(shí)數(shù)a的值;
          (Ⅱ)若函數(shù)F(x)=g(x)+
          1
          x
          ,求函數(shù)F(x)的極值;
          (Ⅲ)若存在x使不等式
          x-m
          f(x)
          x
          成立,求實(shí)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•眉山二模)函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.
          (Ⅰ)求此平行線的距離;
          (Ⅱ)若存在x使不等式
          x-m
          f(x)
          x
          成立,求實(shí)數(shù)m的取值范圍;
          (Ⅲ)對(duì)于函數(shù)y=f(x)和y=g(x)公共定義域中的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.
          (1)求此平行線的距離;
          (2)若存在x使不等式
          x-m
          f(x)
          x
          成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=aex,g(x)=lnx-lna其中a為常數(shù),e=2.718K,函數(shù)y=f(x)和y=g(x)的圖象在它們與坐標(biāo)軸交點(diǎn)處的切線分別為l1,l2,且l1∥l2
          (Ⅰ)求常數(shù)a的值及l(fā)1,l2的方程;
          (Ⅱ)求證:對(duì)于函數(shù)f(x)和g(x)公共定義域內(nèi)的任意實(shí)數(shù)x,有|f(x)-g(x)|>2;
          (Ⅲ)若存在x使不等式
          x-m
          f(x)
          x
          成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案