已知函數(shù)直線
是
圖像的任意兩條對稱軸,且
的最小值為
.
求函數(shù)的單調(diào)增區(qū)間;
(2)求使不等式的
的取值范圍.
(3)若求
的值;
(1);(2)
;(3)
解析試題分析:(1)由題意可得的周期
,從而可得
,根據(jù)正弦函數(shù)
的單調(diào)遞增區(qū)間為
,可令
從而可解得的單調(diào)遞增區(qū)間為
;
由(1)中求得的的表達式可知,不等式等可化為
,因此不等式等價于
,解得
,
即的取值范圍是
;(3)由(1)及條件
可得
,
,
,因此可以利用兩角差的余弦進行三角恒等變形,從而得到
.
(1)由題意得則
由
解得
故
的單調(diào)增區(qū)間是
4分;
(2)由(1)可得,
因此不等式等價于,解得
,
∴的取值范圍為
8分;
(3),則
∴ 13分.
考點:1.三角函數(shù)的圖像與性質(zhì);2簡單的三角不等式;3.三角恒等變形.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=asin x+bcos
的圖象經(jīng)過點
,
.
(1)求實數(shù)a,b的值;
(2)求函數(shù)f(2x)的周期及單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)直線
是
圖像的任意兩條對稱軸,且
的最小值為
.
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若求
的值;
(3)若關(guān)于的方程
在
有實數(shù)解,求實數(shù)
的取值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
將函數(shù)的圖形向右平移
個單位后得到
的圖像,已知
的部分圖像如圖所示,該圖像與y軸相交于點
,與x軸相交于點P、Q,點M為最高點,且
的面積為
.
(1)求函數(shù)的解析式;
(2)在中,
分別是角A,B,C的對邊,
,且
,求
面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com