日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)fn(θ)=sinnθ+(-1)ncosnθ,0≤θ≤
          π4
          ,其中n為正整數(shù).
          (1)判斷函數(shù)f1(θ)、f3(θ)的單調(diào)性,并就f1(θ)的情形證明你的結(jié)論;
          (2)證明:2f6(θ)-f4(θ)=(cos4θ-sin4θ)(cos2θ-sin2θ);
          (3)對于任意給定的正奇數(shù)n,求函數(shù)fn(θ)的最大值和最小值.
          分析:(1)設(shè) θ1<θ2,θ1、θ2∈[0,
          π
          4
          ],根據(jù)三角函數(shù)的特點(diǎn)判斷f1(θ1)-f1(θ2)=(sinθ1-sinθ2)+(cosθ2-cosθ1)<0,從而得出結(jié)論;
          (2)首先利用余弦的二倍角公式化簡原式的左邊等于cos22θ,同理原式右邊也等于cos22θ,從而證明結(jié)論.
          (3)當(dāng)n=1時(shí),f1(θ)在[0,
          π
          4
          ]上單調(diào)遞增,求出最值;當(dāng)n=3時(shí),f3(θ)在[0,
          π
          4
          ]上為單調(diào)遞增,求出最值;正奇數(shù)n≥5的情形,首先根據(jù)定義判斷出函數(shù)的單調(diào)遞增,從而得出fn(θ)的最大值為fn
          π
          4
          )=0,最小值為fn(0)=-1.
          解答:解:(1)f1(θ)、f3(θ)在0≤θ≤
          π
          4
          ,上均為單調(diào)遞增的函數(shù).
          對于函數(shù)f1(θ)=sinθ-cosθ,設(shè) θ1<θ2,θ1、θ2∈[0,
          π
          4
          ],則
          f1(θ1)-f1(θ2)=(sinθ1-sinθ2)+(cosθ2-cosθ1),
          ∵sinθ1<sinθ2,cosθ2<cosθ1
          ∴f1(θ1)<f1(θ2)函數(shù)f1(θ)在[0,
          π
          4
          ]上單調(diào)遞增.
          (2)∵原式左邊=2(sin6θ+cos6θ)-(sin4θ+cos4θ)
          =2(sin2θ+cos2θ)(sin4θ-sin2θcos2θ+cos4θ)-(sin4θ+cos4θ)
          =1-sin22θ=cos22θ.
          又∵原式右邊=(cos2θ-sin2θ)2=cos2
          ∴2f6(θ)-f4(θ)=(cos4θ-sin4θ)(cos2θ-sin2θ).
          (3)當(dāng)n=1時(shí),函數(shù)f1(θ)在[0,
          π
          4
          ]上單調(diào)遞增,
          f1(θ)的最大值為f1
          π
          4
          )=0,最小值為f1(0)=-1.
          當(dāng)n=3時(shí),函數(shù)f3(θ)在[0,
          π
          4
          ]上為單調(diào)遞增.
          ∴f3(θ)的最大值為f3
          π
          4
          )=0,最小值為f3(0)=-1.
          下面討論正奇數(shù)n≥5的情形:對任意θ1、θ2∈[0,
          π
          4
          ],且θ1<θ2
          ∵fn(θ1)-fn(θ2)=(sinnθ1-sinnθ2)+(cosnθ2-cosnθ1),
          以及 0≤sinθ1<sinθ2<1  0≤cosθ2<cosθ1<1,
          ∴sinnθ1<sinnθ2 cosnθ2<cosnθ1,從而fn(θ1)<fn(θ2).
          ∴fn(θ)在[0,
          π
          4
          ]上為單調(diào)遞增,
          則fn(θ)的最大值為fn
          π
          4
          )=0,最小值為fn(0)=-1.
          綜上所述,當(dāng)n為奇數(shù)時(shí),函數(shù)fn(θ)的最大值為0,最小值為-1.
          點(diǎn)評:本題考查了三角函數(shù)的最值,函數(shù)單調(diào)性的判定以及同角三角函數(shù)的基本關(guān)系,一般根據(jù)定義判斷函數(shù)的單調(diào)性,此題有一定難度.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          6
          3
          ,F(xiàn)為橢圓的右焦點(diǎn),M,N兩點(diǎn)在橢圓C上,且
          MF
          FN
          (λ>0)
          ,定點(diǎn)A(-4,0).
          (1)若λ=1時(shí),有
          AM
          AN
          =
          106
          3
          ,求橢圓C的方程;
          (2)在條件(1)所確定的橢圓C下,當(dāng)動(dòng)直線MN斜率為k,且設(shè)s=1+3k2時(shí),試求
          AM
          AN
          tan∠MAN
          關(guān)于S的函數(shù)表達(dá)式f(s)的最大值,以及此時(shí)M,N兩點(diǎn)所在的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,矩形ABCD的邊長AB=6,BC=4,點(diǎn)F在DC上,DF=2.動(dòng)點(diǎn)M、N分別從點(diǎn)D、B同時(shí)出發(fā),沿射線DA、BA的方向運(yùn)動(dòng),當(dāng)?shù)诙蜯F=MN時(shí)M、N兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連接FM、FN,當(dāng)F、N、M不在同一直線時(shí),可得△FMN,設(shè)動(dòng)點(diǎn)M、N的速度都是1個(gè)單位/秒,M、N運(yùn)動(dòng)的時(shí)間為t秒.試解答下列問題:
          (1)求F、M、N三點(diǎn)共線時(shí)t的值;
          (2)設(shè)△FMN的面積為S,寫出S與t的函數(shù)關(guān)系式.并求出t為何值時(shí)S的值最大.
          (3)試問t為何值時(shí),△FMN為直角三角形?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶94中高三(上)第五次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖所示,矩形ABCD的邊長AB=6,BC=4,點(diǎn)F在DC上,DF=2.動(dòng)點(diǎn)M、N分別從點(diǎn)D、B同時(shí)出發(fā),沿射線DA、BA的方向運(yùn)動(dòng),當(dāng)?shù)诙蜯F=MN時(shí)M、N兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連接FM、FN,當(dāng)F、N、M不在同一直線時(shí),可得△FMN,設(shè)動(dòng)點(diǎn)M、N的速度都是1個(gè)單位/秒,M、N運(yùn)動(dòng)的時(shí)間為t秒.試解答下列問題:
          (1)求F、M、N三點(diǎn)共線時(shí)t的值;
          (2)設(shè)△FMN的面積為S,寫出S與t的函數(shù)關(guān)系式.并求出t為何值時(shí)S的值最大.
          (3)試問t為何值時(shí),△FMN為直角三角形?

          查看答案和解析>>

          同步練習(xí)冊答案