日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)f(x)滿足:f(1-x)=f(x+1),f(0)=2,f(1)=1.
          (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.
          分析:(I)設(shè)f(x)解析式為y=ax2+bx+c,由f(1-x)=f(x+1)可得-
          b
          2a
          =1
          ,又f(0)=2,f(1)=1,即可得一個方程組進而得到答案.
          (Ⅱ)由(I)可得:y=x2-2x+2=(x-1)2+1,再結(jié)合二次函數(shù)的性質(zhì)可得答案.
          解答:解:(I)設(shè)f(x)解析式為y=ax2+bx+c(a≠0)…(2分)
          ∵f(1-x)=f(x+1)
          ∴f(x)對稱軸為x=1,即-
          b
          2a
          =1
          …①…(4分)
          又f(0)=2,f(1)=1
          c=2
          a+b+c=1
          …②…(6分)
          所以聯(lián)立①②,得a=1,b=-2,c=2…(8分)
          所以f(x)解析式為:y=x2-2x+2…(9分)
          (Ⅱ)由(I)可得:y=x2-2x+2=(x-1)2+1
          所以結(jié)合二次函數(shù)的性質(zhì)可得:f(x)單調(diào)增區(qū)間為(1,+∞);…(11分)
          并且f(x)單調(diào)減區(qū)間為(-∞,1);…(13分)
          點評:解決此類問題的關(guān)鍵是熟練掌握利用待定系數(shù)法求函數(shù)解析式,以及熟練掌握二次函數(shù)的性質(zhì)與函數(shù)圖象,此題屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
          (I)若函數(shù)的圖象經(jīng)過原點,且滿足f(2)=0,求實數(shù)m的值.
          (Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
          (Ⅰ)求f(x)的表達式;
          (Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2-16x+q+3.
          (1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
          (2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
          f(x)x-1

          (1)求a的值;
          (2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
          (3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知二次函數(shù)f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
          (2)已知二次函數(shù)f(x)的圖象的頂點是(-1,2),且經(jīng)過原點,求f(x)的解析式.

          查看答案和解析>>

          同步練習(xí)冊答案