日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知拋物線C1:y2=4x,圓C2:(x-1)2+y2=1,過拋物線焦點(diǎn)F的直線l交C1于A,D兩點(diǎn)(點(diǎn)A在x軸上方),直線l交C2于B,C兩點(diǎn)(點(diǎn)B在x軸上方).
          (Ⅰ)求|AB|•|CD|的值;
          (Ⅱ)設(shè)直線OA、OB、OC、OD的斜率分別為m、n、p、q,且滿足m+n+p+q=3
          2
          ,并且|AB|,|BC|,|CD|成等差數(shù)列,求出所有滿足條件的直線l的方程.
          分析:(1)利用拋物線的定義和|AF|=|AB|+1就可得出|AB|=xA,同理可得:|CD|=xD,要分l⊥x軸和l不垂直x軸兩種情況分別求值,當(dāng)l⊥x軸時(shí)易求,當(dāng)l不垂直x軸時(shí),將直線的方程代入拋物線方程,利用根與系數(shù)關(guān)系可求得.
          (2)首先在第1問得基礎(chǔ)上和|AB|,|BC|,|CD|成等差數(shù)的關(guān)系用坐標(biāo)表示,就可得出k的值,然后再把m+n+p+q=3
          2
          用坐標(biāo)表示,再聯(lián)立直線和圓的方程利用根與系數(shù)關(guān)系,把幾個(gè)坐標(biāo)的關(guān)系式聯(lián)合起來就可確定k的值,從而求出此時(shí)的直線方程.
          解答:解:(1)∵y2=4x,焦點(diǎn)F(1,0),準(zhǔn)線 l0:x=-1.
          由定義得:|AF|=xA+1,又∵|AF|=|AB|+1,∴|AB|=xA同理:|CD|=xD
          當(dāng)l⊥x軸時(shí),則xD=xA=1,∴|AB|×|CD|=1          
          當(dāng)l:y=k(x-1)時(shí),代入拋物線方程,得:k2x2-(2k2+4)x+k2=0,∴xAxD=1,∴|AB|×|CD|=1
          綜上所述,|AB|×|CD|=1
          (2)∵|AB|,|BC|,|CD|成等差,且|AB|=xA,|BC|=2,|CD|=xD,∴xA+xD=4
          由(1)得:xA+xD=
          2k2+4
          k2
          , ∴k2=2
          ,∴k=±
          2

          ∵l:y=k(x-1),∴m=kOA=
          yA
          xA
          =k(1-
          1
          xA
          )

          同理:n=k(1-
          1
           xB 
          ) ,p=k(1-
          1
          xC
          ) ,q=k(1-
          1
          xD
          )

          m+n+p+q=k[4-(
          1
          xA
          +
          1
          xD
          )-(
          1
          xB
          +
          1
          xC
          )]=3
          2

          1
          xA
          +
          1
          xD
          =
          xA+xD
          xAxD
          =4

          把y=k(x-1)代入(x-1)2+y2=1得,(k2+1)x2-2(1+k2)x+k2=1,∵k2=2,∴3x2-6x+2=0
          xB+xC=2,  xBxC=
          2
          3
           ,
          1
           xB 
          +
          1
          xC
          =3,  ∴K=-
          2
          ,
          所以所求直線L的方程為
          2
          x+y-
          2
          =0
          點(diǎn)評(píng):本題主要考查拋物線的定義、一元二次方程的根與系數(shù)關(guān)系,好在本題還融和了等差數(shù)列,主題思路是轉(zhuǎn)化成坐標(biāo)關(guān)系式,用方程的思想去解決.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C1:y2=4mx(m>0)的焦點(diǎn)為F2,其準(zhǔn)線與x軸交于點(diǎn)F1,以F1,F(xiàn)2為焦點(diǎn),離心率為
          12
          的橢圓C2與拋物線C1在x軸上方的一個(gè)交點(diǎn)為P.
          (1)當(dāng)m=1時(shí),求橢圓的標(biāo)準(zhǔn)方程及其右準(zhǔn)線的方程;
          (2)用m表示P點(diǎn)的坐標(biāo);
          (3)是否存在實(shí)數(shù)m,使得△PF1F2的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù)m;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C1:y2=x+7,圓C2:x2+y2=5.
          (1)求證拋物線與圓沒有公共點(diǎn);
          (2)過點(diǎn)P(a,0)作與x軸不垂直的直線l交C1,C2依次為A、B、C、D,若|AB|=|CD|,求實(shí)數(shù)a的變化范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•河北模擬)已知拋物線C1:y2=2px和圓C2(x-
          p
          2
          )
          2
          +y2=
          p2
          4
          ,其中p>0,直線l經(jīng)過C1的焦點(diǎn),依次交C1,C2于A,B,C,D四點(diǎn),則
          AB
          CD
          的值為
          p2
          4
          p2
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知拋物線C1:y2=2px(p>0)的焦點(diǎn)F以及橢圓C2
          y2
          a2
          +
          y2
          b2
          =1,(a>b>0)
          的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓O:x2+y2=1上.
          (Ⅰ)求拋物線C1和橢圓C2的標(biāo)準(zhǔn)方程;
          (Ⅱ)過點(diǎn)F的直線交拋物線C1于A、B兩不同點(diǎn),交y軸于點(diǎn)N,已知
          NA
          =λ1
          AF
          , 
          NB
           =λ2
          BF
          ,求證:λ12為定值.
          (Ⅲ)直線l交橢圓C2于P、Q兩不同點(diǎn),P、Q在x軸的射影分別為P'、Q',
          OP
          OQ
          +
          OP′
          OQ′
           +1=0
          ,若點(diǎn)S滿足:
          OS
          OP
           +
          OQ
          ,證明:點(diǎn)S在橢圓C2上.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案