日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓的左、右焦點分別為,A是橢圓C上的一點,且,坐標(biāo)原點O到直線的距離為

          (1)求橢圓C的方程;

          (2)設(shè)Q是橢圓C上的一點,過Q的直線lx軸于點,較y軸于點M,若,求直線l的方程.

          (1)(2)


          解析:

          (1)由題設(shè)知

          由于,則有,所以點A的坐標(biāo)為,

          所在直線方程為, ………………………………3分

          所以坐標(biāo)原點O到直線的距離為,

          ,所以,解得,

          所求橢圓的方程為.……………………………………………5分

          (2)由題意知直線l的斜率存在,設(shè)直線l的方程為,則有,

          設(shè),由于,

          ,解得     …………………8分

          Q在橢圓C上,得,

          解得, …………………………………………………………………………10分

          故直線l的方程為

          .   ……………………………………………12分

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知中心在坐標(biāo)原點、焦點在x軸上橢圓的離心率e=
          3
          3
          ,以原點為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
          (1)求該橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)橢圓的左,右焦點分別是F1和F2,直線l1過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1于點P,求線段PF1的垂直平分線與l2的交點M的軌跡方程,并指明曲線類型.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (08年四川卷理)設(shè)橢圓的左、右焦點分別是、,離心率,右準(zhǔn)線上的兩動點、,且

          (Ⅰ)若,求、的值;

          (Ⅱ)當(dāng)最小時,求證共線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分12分) 已知橢圓的離心率,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切。(I)求a與b;(II)設(shè)橢圓的左,右焦點分別是F1和F2,直線且與x軸垂直,動直線軸垂直,于點P,求線段PF1的垂直平分線與的交點M的軌跡方程,并指明曲線類型。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

          設(shè)橢圓的左、右焦點分別是F1、F2,離心率,右準(zhǔn)線l上的兩動點M、N,且,
          (Ⅰ)若,求a、b的值;
          (Ⅱ)當(dāng)最小時,求證共線。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省黃山市休寧中學(xué)高三(上)數(shù)學(xué)綜合練習(xí)試卷1(文科)(解析版) 題型:解答題

          已知中心在坐標(biāo)原點、焦點在x軸上橢圓的離心率,以原點為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
          (1)求該橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)橢圓的左,右焦點分別是F1和F2,直線l1過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1于點P,求線段PF1的垂直平分線與l2的交點M的軌跡方程,并指明曲線類型.

          查看答案和解析>>

          同步練習(xí)冊答案