日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA⊥PD,E,F(xiàn)分別為PC,BD的中點(diǎn).證明
          (1)EF平面PAD;
          (2)EF⊥平面PDC.
          證明:(1)連接AC,在△CPA中,因?yàn)镋,F(xiàn)分別為PC,BD的中點(diǎn),
          所以EFPA.而PA?平面PAD,EF?平面PAD,
          所以直線EF平面PAD.
          (2)因?yàn)槠矫鍼AD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD?平面ABCD,且CD⊥AD,
          所以CD⊥PA.又因?yàn)镻A⊥PD,且CD,PD?平面PDC,
          所以PA⊥平面PDC.而EFPA,所以EF⊥平面PDC.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖示,在底面為直角梯形的四棱椎P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
          3
          ,BC=6.
          (1)求證:BD⊥平面PAC;
          (2)求二面角A-PC-D的正切值;
          (3)求點(diǎn)D到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          球的半徑為8,經(jīng)過球面上一點(diǎn)作一個(gè)平面,使它與經(jīng)過這點(diǎn)的半徑成45°角,則這個(gè)平面截球的截面面積為______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,在正方體ABCD-A1B1C1D1中,E是棱DD1的中點(diǎn).
          (1)求直線BE和直線CD所成角的余弦值;
          (2)在棱C1D1上是否存在一點(diǎn)F,使B1F平面A1BE?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E為PA的中點(diǎn).
          (1)如圖,若正視方向與AD平行,請(qǐng)?jiān)谙旅妫ù痤}區(qū))方框內(nèi)作出該幾何體的正視圖并求出正視圖面積;
          (2)證明:DE平面PBC;
          (3)求四棱錐P-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,空間四邊形ABCD被一平面所截,截面EFGH是平行四邊形.
          (1)求證:CD平面EFGH;
          (2)如果AB=CD=a,求證:四邊形EFGH的周長為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如下的三個(gè)圖中,左面的是一個(gè)長方體截去一個(gè)角所得多面體的直觀圖,它的主視圖和左視圖在右面畫出(單位:cm).(1)按照給出的尺寸,求該多面體的體積;(2)在所給直觀圖中連結(jié)BC′,證明:BC′面EFG.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形,
          (Ⅰ)求證:MD平面APC;
          (Ⅱ)求證:平面ABC⊥平面APC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,且PA⊥面ABCD,PA=AB,E為PD的中點(diǎn).
          (1)求證:直線PB面ACE
          (2)求證:直線AE⊥面PCD
          (3)求直線AC與平面PCD所成角的大小.

          查看答案和解析>>

          同步練習(xí)冊答案