日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=-x3+ax2-4(),是f(x)的導(dǎo)函數(shù).
          (1)當a=2時,對任意的的最小值;
          (2)若存在使f(x0)>0,求a的取值范圍.

          (1)-11(2)

          解析試題分析:
          (1)把a=2帶入f(x),對f(x)求導(dǎo)得單調(diào)性,得極值與[-1,1]區(qū)間端點對應(yīng)的函數(shù)值進行比較得到最小值,對f(x)求導(dǎo)得到導(dǎo)函數(shù),導(dǎo)函數(shù)為二次函數(shù)可以對稱軸圖像得到導(dǎo)函數(shù)在區(qū)間[-1,1]上的最小值,函數(shù)f(x)與f(x)的導(dǎo)函數(shù)最小值之和即為的最小值.
          (2)該問題為固定區(qū)間上的恒成立問題,只需要函數(shù)f(x)在區(qū)間最小值大于0.關(guān)于函數(shù)f(x)的最值可以通過求導(dǎo)求單調(diào)性來得到在該區(qū)間上的最值,由于導(dǎo)函數(shù)是含參數(shù)的二次函數(shù),故討論需遵循開口,有無根,根的大小等步驟進行分類討論確定原函數(shù)的單調(diào)性,得到最小值,進而得到a的取值范圍.
          試題解析:
          (1)由題意知
              2分
          在[-1,1]上變化時,的變化情況如下表:

          x
          -1
          (-1,0)
          0
          (0,1)
          1

          -7
          -
          0
          +
          1

          -1

          -4

          -3
          的最小值為    4分
          的對稱軸為,且拋物線開口向下,
          的最小值為    5分
          的最小值為-11.    6分
          (2).
          ①若,上單調(diào)遞減,

              9分
          ②若
          從而上單調(diào)遞增,在上單調(diào)遞減,
          .    12分
          根據(jù)題意,
          綜上,的取值范圍是    14分
          (或由,用兩種方法可解)

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          設(shè)
          (1)令,討論內(nèi)的單調(diào)性并求極值;
          (2)求證:當時,恒有

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知
          (1)若方程有3個不同的根,求實數(shù)的取值范圍;
          (2)在(1)的條件下,是否存在實數(shù),使得上恰有兩個極值點,且滿足,若存在,求實數(shù)的值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知曲線.
          (1)求曲線在點()處的切線方程;
          (2)若存在使得,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知曲線.
          (1)若曲線C在點處的切線為,求實數(shù)的值;
          (2)對任意實數(shù),曲線總在直線:的上方,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù).
          (1)求函數(shù)的極小值;
          (2)求函數(shù)的遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù),且是函數(shù)的一個極小值點.
          (1)求實數(shù)的值;
          (2)求在區(qū)間上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)(,為自然對數(shù)的底數(shù)).
          (1)若曲線在點處的切線平行于軸,求的值;
          (2)求函數(shù)的極值;
          (3)當的值時,若直線與曲線沒有公共點,求的最大值.
          (注:可能會用到的導(dǎo)數(shù)公式:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          計算下列定積分的值:
          (1);(2).

          查看答案和解析>>