設(shè)函數(shù)f(x)=ax3-3x2,(a∈R),且x=2是y=f(x)的極值點.
(Ⅰ)求實數(shù)a的值,并求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)g(x)=ex•f(x)的單調(diào)區(qū)間.
分析:(1)先對函數(shù)f(x)求導(dǎo),根據(jù)f′(2)=0可求出a的值,再由導(dǎo)數(shù)大于0時原函數(shù)單調(diào)遞增,導(dǎo)數(shù)小于0時原函數(shù)單調(diào)遞減可得答案.
(2)先求出函數(shù)g(x)的解析式然后求導(dǎo),再由導(dǎo)數(shù)大于0時原函數(shù)單調(diào)遞增,導(dǎo)數(shù)小于0時原函數(shù)單調(diào)遞減可得答案.
解答:解:(Ⅰ)f′(x)=3ax
2-6x=3x(ax-2),因為x=2是函數(shù)y=f(x)的極值點,
所以f′(2)=0,即6(2a-2)=0,因此a=1.
經(jīng)驗證,當(dāng)a=1時,x=2是函數(shù)y=f(x)的極值點.所以f′(x)=3x
2-6x=3x(x-2).
所以y=f(x)的單調(diào)增區(qū)間是(-∞,0),(2,+∞);單調(diào)減區(qū)間是(0,2)
(Ⅱ)g(x)=e
x(x
3-3x
2),
g′(x)=e
x(x
3-3x
2+3x
2-6x)=e
x(x
3-6x)=
x(x+)(x-)ex,
因為e
x>0,所以,y=g(x)的單調(diào)增區(qū)間是
(-,0),
(,+∞);
單調(diào)減區(qū)間是
(-∞,-),
(0,).
點評:本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減.