日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)y=f(x)(x∈R)滿足f(x)+f(1-x)=1.
          (1)求f(
          1
          2
          )和f(
          1
          n
          )+f(
          n-1
          n
          )(n∈N*)
          的值;
          (2)若數(shù)列{an}滿足an=f(0)+f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )+f(1)
          (n∈N*),求{an}的通項公式;
          (3)若數(shù)列{bn}滿足bn=2n+1•an,Sn是數(shù)列{bn}前n項的和,是否存在正實數(shù)k,使不等式knSn>4bn對于一切的n∈N*恒成立?若存在指出k的取值范圍,并證明;若不存在說明理由.
          分析:由題設(shè)知,處變量的和為1,則函數(shù)值和為1.對于(1)令x=
          1
          2
          可以求得f(
          1
          2
          )值,令x=
          1
          n
          可以求得f(
          1
          n
          )+f(
          n-1
          n
          )的值.
          對于(2)觀察通項的形式,可以用倒序相加法求出通項的方程.求出an的值.
          對于(3)可以看出,本題是一個對存在性問題的探究,其前提是解出數(shù)列{bn}的前n項和,觀察其形式可以看出,就用錯位相減法求和,代入不等式,可得到一關(guān)于n的一元二次不等式恒成立,由單調(diào)性判斷可得出關(guān)于參數(shù)k的不等式.
          解答:解:(1)令x=
          1
          2
          ,f(
          1
          2
          )+f(1-
          1
          2
          )=1
          ,∴f(
          1
          2
          )=
          1
          2
          ,
          x=
          1
          n
          ,f(
          1
          n
          )+f(
          n-1
          n
          )=1

          (2)∵an=f(0)+f(
          1
          n
          )+f(
          2
          n
          )++f(
          n-1
          n
          )+f(1)

          an=f(1)+f(
          n-1
          n
          )+f(
          n-2
          n
          )++f(
          1
          n
          )+f(0)

          由(Ⅰ),知f(
          1
          n
          )+f(
          n-1
          n
          )=1

          ∴①+②,得2an=(n+1).∴an=
          n+1
          2

          (3)∵bn=2n+1•an,∴bn=(n+1)•2n
          ∴Sn=2•21+3•22+4•23+…+(n+1)•2n,①
          2Sn=2•22+3•23+4•24+…+n•2n+(n+1)•2n+1,②
          ①-②得-Sn=4+22+23+…+2n-(n+1)•2n+1
          即Sn=n•2n+1
          要使得不等式knSn>4bn恒成立,
          即kn2-2n-2>0對于一切的n∈N*恒成立,n=1時,k-2-2>0成立,即k>4
          設(shè)g(n)=kn2-2n-2
          當(dāng)k>4時,由于對稱軸直線n=
          1
          k
          <1

          且g(1)=k-2-2>0,而函數(shù)f(x)在[1,+∞)是增函數(shù),
          ∴不等式knSn>bn恒成立
          即當(dāng)實數(shù)k大于4時,不等式knSn>bn對于一切的n∈N*恒成立.
          點評:本題考點是恒等式的意義與錯位相減法求和,以及不等式恒成立時怎么根據(jù)其形式求最值.考查了變形能力以及結(jié)合相應(yīng)函數(shù)的性質(zhì)對不等式恒成立的條件作出判斷的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          2、已知函數(shù)y=f(x+1)的圖象過點(3,2),則函數(shù)f(x)的圖象關(guān)于x軸的對稱圖形一定過點( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x<0時,f(x)=x(1-x),那么當(dāng)x>0時,f(x)=
          -x(1+x)
          -x(1+x)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0 時,f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
          [-3,3]
          [-3,3]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
          (1,3]
          (1,3]

          查看答案和解析>>

          同步練習(xí)冊答案