日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知偶函數(shù)f(x)在R上的任一取值都有導數(shù),且f′(1)=1,f(x+2)=f(x-2),則曲線y=f(x)在x=-5處的切線的斜率為( 。
          分析:由ff(x+2)=f(x-2)得f(x+4)=f(x),再兩邊求導得f′(x+4)=f′(x),結合f(x)為偶函數(shù),得到一個式子,對此式再兩邊求導,由此和條件可求即f′(-5)的值即為所求切線的斜率.
          解答:解:由題意知,由f(x+2)=f(x-2),得f(x+4)=f(x),
          ∵f(x)在R上可導,
          ∴f′(x+4)(x+4)′=f′(x)(x)′,即f′(x+4)=f′(x)①,
          ∵f(x)為偶函數(shù),∴f(-x)=f(x),
          ∴f′(-x)(-x)′=f′(x),即f′(-x)=-f′(x)②,
          ∴f′(-5)=f′(-1)=-f′(1)=-1,即所求切線的斜率為-1,
          故選D.
          點評:本題考查了利用導數(shù)求曲線上過某點切線方程的斜率,以及函數(shù)奇偶性的應用,解題的關鍵是得出f′(x+4)=f′(x)和f′(-x)=-f′(x),是一道中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知偶函數(shù)f(x)在區(qū)間[0,π]上單調遞增,那么下列關系成立的是( 。
          A、f(-π)>f(-2)>f(
          π
          2
          )
          B、f(-π)>f(-
          π
          2
          )>f(-2)
          C、f(-2)>f(-
          π
          2
          )>f(-π)
          D、f(-
          π
          2
          )>f(-2)>f(π)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          3、已知偶函數(shù)f(x)在(0,+∞)上單調遞增,則f(-3),f(-1),f(2)的大小關系是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知偶函數(shù)f(x)在區(qū)間[0,+∞)上滿足f′(x)>0則不等式f(2x-1)<f(
          1
          3
          )的解集是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調遞減,則滿足f(2x-1)<f(x+3)的x的取值范圍是
          x>2或x<-
          4
          3
          x>2或x<-
          4
          3

          查看答案和解析>>

          同步練習冊答案