“”是“方程
表示圓”的 ( )
A. 充分而不必要條件 B. 必要而不充分條件
C. 充分必要條件 D. 既不充分也不必要條件
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆吉林省吉林市高二上學(xué)期期末文數(shù)學(xué)試卷(解析版) 題型:解答題
在中,角
所對(duì)的邊分別為
,已知
,
(1)求的大;(2)若
求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆北京海淀區(qū)高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知拋物線:
,
為坐標(biāo)原點(diǎn),
為
的焦點(diǎn),
是
上一點(diǎn). 若
是等腰三角形,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆北京市西城區(qū)高二第一學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在四棱錐中,底面
為矩形,
底面
,
、
分別是
、
中點(diǎn).
(1)求證:平面
;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆北京市西城區(qū)高二第一學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知正方體,點(diǎn)
,
,
分別是線段
,
和
上的動(dòng)點(diǎn),觀察直線
與
,
與
.給出下列結(jié)論:
①對(duì)于任意給定的點(diǎn),存在點(diǎn)
,使得
;
②對(duì)于任意給定的點(diǎn),存在點(diǎn)
,使得
;
③對(duì)于任意給定的點(diǎn),存在點(diǎn)
,使得
;
④對(duì)于任意給定的點(diǎn),存在點(diǎn)
,使得
.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆北京市西城區(qū)高二第一學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知拋物線,點(diǎn)
,過(guò)
的直線
交拋物線
于
兩點(diǎn).
(1)若,拋物線
的焦點(diǎn)與
中點(diǎn)的連線垂直于
軸,求直線
的方程;
(2)設(shè)為小于零的常數(shù),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,求證:直線
過(guò)定點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆北京市西城區(qū)高二第一學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知一個(gè)正方體的八個(gè)頂點(diǎn)都在同一個(gè)球面上,若此正方體的棱長(zhǎng)為,那么這個(gè)球的表面積為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆北京東城(南片)高二上學(xué)期期末考試?yán)頂?shù)學(xué)試卷(解析版) 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC1∥平面CDB1;
(2)求四面體B1C1CD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆北京東城區(qū)高二第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
若直線與圓
相交于
,
兩點(diǎn),且
(其中
為原點(diǎn)),則
的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com