日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}中,a1=t,a2=t2(t>0且t≠1),若x=是函數(shù)f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一個極值點。
          (Ⅰ)證明數(shù)列{an+1-an}是等比數(shù)列,并求數(shù)列{an}的通項公式;
          (Ⅱ)記,當(dāng)t=2時,數(shù)列{bn}的前n項和為Sn,求使Sn>2008的n的最小值;
          (Ⅲ)當(dāng)t=2時,求證:對于任意的正整數(shù)n,有。
          解:(Ⅰ),
          由題意,即,
          ,
          ∵t>0且t≠1,
          ∴數(shù)列是以為首項,t為公比的等比數(shù)列,
          ,


          以上各式兩邊分別相加得
          ,
          當(dāng)n=1時,上式也成立,

          (Ⅱ)當(dāng)t=2時,,


          ,得,,
          當(dāng)時,,
          當(dāng)時,,
          因此n的最小值為1005;
          (Ⅲ)∵,
          <
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=1,an+1-an=
          1
          3n+1
          (n∈N*)
          ,則
          lim
          n→∞
          an
          =
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=1,an+1=
          an
          1+2an
          ,則{an}的通項公式an=
          1
          2n-1
          1
          2n-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
          n+1
          2
          an+1(n∈N*)

          (1)求數(shù)列{an}的通項公式;
          (2)求數(shù)列{
          2n
          an
          }
          的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=
          1
          2
          Sn
          為數(shù)列的前n項和,且Sn
          1
          an
          的一個等比中項為n(n∈N*
          ),則
          lim
          n→∞
          Sn
          =
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項公式為(  )
          A、
          n
          2n
          B、
          n
          2n-1
          C、
          n
          2n-1
          D、
          n+1
          2n

          查看答案和解析>>

          同步練習(xí)冊答案