日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四棱錐中, 為正三角形,平面底面,底面為梯形, , , , , ,點(diǎn)在棱上,且. 

          求證:(1)平面平面;

          2)求證: 平面

          3)求三棱錐的體積.

          【答案】1見(jiàn)解析2見(jiàn)解析3

          【解析】試題分析:(1)取中點(diǎn),由正三角形性質(zhì)得,再根據(jù)面面垂直性質(zhì)定理得平面,即得,根據(jù)已知條件,由線(xiàn)面垂直判定定理得平面,最后根據(jù)面面垂直判定定理得結(jié)論(2)連接, ,交于點(diǎn),根據(jù)相似可得,再根據(jù)線(xiàn)面平行判定定理得結(jié)論(3)由等體積性質(zhì)得,再根據(jù)錐體體積公式求體積

          試題解析:(1)證明:取中點(diǎn),連接,

          因?yàn)?/span>是正三角形,所以,

          又因?yàn)槠矫?/span>底面

          平面,平面平面

          所以平面,

          因?yàn)?/span>平面,所以

          又因?yàn)?/span>, , , 平面,

          因?yàn)?/span>平面, 平面,

          所以平面平面

          (2)連接, ,交于點(diǎn),因?yàn)?/span>

          所以,所以,

          又因?yàn)?/span>,所以,

          因?yàn)?/span>平面, 平面,所以平面

          (3)因?yàn)?/span>,

          所以

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)滿(mǎn)足f(﹣x)=f(x),f(x+8)=f(x),且當(dāng)x∈(0,4]時(shí)f(x)= ,關(guān)于x的不等式f2(x)+af(x)>0在[﹣2016,2016]上有且只有2016個(gè)整數(shù)解,則實(shí)數(shù)a的取值范圍是(
          A.(﹣ ln6,ln2]
          B.(﹣ln2,﹣ ln6)
          C.(﹣ln2,﹣ ln6]
          D.(﹣ ln6,ln2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱錐中, 兩兩垂直且相等,過(guò)的中點(diǎn)作平面,且分別交PB,PCM、N,交的延長(zhǎng)線(xiàn)于

          )求證: 平面;

          )若,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在約束條件 下,當(dāng)t≥0時(shí),其所表示的平面區(qū)域的面積為S(t),S(t)與t之間的函數(shù)關(guān)系用下列圖象表示,正確的應(yīng)該是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓的圓心在直線(xiàn)上,且圓經(jīng)過(guò)點(diǎn)與點(diǎn).

          (1)求圓的方程;

          (2)過(guò)點(diǎn)作圓的切線(xiàn),求切線(xiàn)所在的直線(xiàn)的方程.

          【答案】(1);(2).

          【解析】試題分析:(1)求出線(xiàn)段的中點(diǎn),進(jìn)而得到線(xiàn)段的垂直平分線(xiàn)為,與聯(lián)立得交點(diǎn),∴.則圓的方程可求

          (2)當(dāng)切線(xiàn)斜率不存在時(shí),可知切線(xiàn)方程為.

          當(dāng)切線(xiàn)斜率存在時(shí),設(shè)切線(xiàn)方程為,由到此直線(xiàn)的距離為,解得,即可到切線(xiàn)所在直線(xiàn)的方程.

          試題解析:((1)設(shè) 線(xiàn)段的中點(diǎn)為,∵,

          ∴線(xiàn)段的垂直平分線(xiàn)為,與聯(lián)立得交點(diǎn),

          .

          ∴圓的方程為.

          (2)當(dāng)切線(xiàn)斜率不存在時(shí),切線(xiàn)方程為.

          當(dāng)切線(xiàn)斜率存在時(shí),設(shè)切線(xiàn)方程為,即,

          到此直線(xiàn)的距離為,解得,∴切線(xiàn)方程為.

          故滿(mǎn)足條件的切線(xiàn)方程為.

          【點(diǎn)睛本題考查圓的方程的求法,圓的切線(xiàn),中點(diǎn)弦等問(wèn)題,解題的關(guān)鍵是利用圓的特性,利用點(diǎn)到直線(xiàn)的距離公式求解.

          型】解答
          結(jié)束】
          20

          【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本(單位:萬(wàn)元)與產(chǎn)品銷(xiāo)售收入(單位:萬(wàn)元)存在較好的線(xiàn)性關(guān)系,下表記錄了最近5次產(chǎn)品的相關(guān)數(shù)據(jù).

          (投入成本)

          7

          10

          11

          15

          17

          (銷(xiāo)售收入)

          19

          22

          25

          30

          34

          1)求關(guān)于的線(xiàn)性回歸方程;

          2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本20萬(wàn)元的毛利率更大還是投入成本24萬(wàn)元的毛利率更大()?

          相關(guān)公式 , .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某中學(xué)對(duì)男女學(xué)生是否喜愛(ài)古典音樂(lè)進(jìn)行了一個(gè)調(diào)查,調(diào)查者對(duì)學(xué)校高三年級(jí)隨機(jī)抽取了100名學(xué)生,調(diào)查結(jié)果如表:

          喜愛(ài)

          不喜愛(ài)

          總計(jì)

          男學(xué)生

          60

          80

          女學(xué)生

          總計(jì)

          70

          30

          附:K2=

          P(K2≥k0

          0.100

          0.050

          0.010

          k0

          2.706

          3.841

          6.635


          (1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認(rèn)為“男學(xué)生和女學(xué)生喜歡古典音樂(lè)的程度有差異”;
          (2)從以上被調(diào)查的學(xué)生中以性別為依據(jù)采用分層抽樣的方式抽取10名學(xué)生,再?gòu)倪@10名學(xué)生中隨機(jī)抽取5名學(xué)生去某古典音樂(lè)會(huì)的現(xiàn)場(chǎng)觀看演出,求正好有X個(gè)男生去觀看演出的分布列及期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知復(fù)數(shù)z,(m∈R,i是虛數(shù)單位).

          (1)若z是純虛數(shù),求m的值;

          (2)設(shè)z的共軛復(fù)數(shù),復(fù)數(shù)+2z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓過(guò)點(diǎn),且離心率為

          )求橢圓的方程.

          )已知雙曲線(xiàn)的離心率是橢圓的離心率的倒數(shù),其頂點(diǎn)為橢圓的焦點(diǎn),求雙曲線(xiàn)的方程.

          )設(shè)直線(xiàn)與雙曲線(xiàn)交于, 兩點(diǎn),過(guò)的直線(xiàn)與線(xiàn)段有公共點(diǎn),求直線(xiàn)的傾斜角的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】微信支付誕生于微信紅包,早期知識(shí)作為社交的一部分“發(fā)紅包”而誕生的,在發(fā)紅包之余才發(fā)現(xiàn),原來(lái)微信支付不僅可以用來(lái)發(fā)紅包,還可以用來(lái)支付,現(xiàn)在微信支付被越來(lái)越多的人們所接受,現(xiàn)從某市市民中隨機(jī)抽取300為對(duì)是否使用微信支付進(jìn)行調(diào)查,得到下列的列聯(lián)表:

          年輕人

          非年輕人

          總計(jì)

          經(jīng)常使用微信支付

          165

          225

          不常使用微信支付

          合計(jì)

          90

          300

          根據(jù)表中數(shù)據(jù),我們得到的統(tǒng)計(jì)學(xué)的結(jié)論是:由__________的把握認(rèn)為“使用微信支付與年齡有關(guān)”。

          其中

          查看答案和解析>>

          同步練習(xí)冊(cè)答案