日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系xOy中,雙曲線的中心在原點(diǎn),焦點(diǎn)在y軸上,一條漸近線方程為x-2y=0,則它的離心率為(  )
          A.B.C.D.2
          A
          依題意設(shè)雙曲線的方程是=1(其中a>0,b>0),則其漸近線方程是y=±x,由題知,即b=2a,因此其離心率e=
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分13分)
          如圖,已知雙曲線的右焦點(diǎn),點(diǎn)分別在的兩條漸近線上,軸,(為坐標(biāo)原點(diǎn)).

          (1)求雙曲線的方程;
          (2)過上一點(diǎn)的直線與直線相交于點(diǎn),與直線相交于點(diǎn),證明點(diǎn)上移動時,恒為定值,并求此定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率為e=
          2
          2
          ,左、右焦點(diǎn)分別為F1、F2,點(diǎn)P的坐標(biāo)為(2,
          3
          ),且F2在線段PF1的中垂線上.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)如果圓E:(x-
          1
          2
          2+y2=r2被橢圓C所覆蓋,求圓的半徑r的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知雙曲線=1(a>0,b>0)的一條漸近線方程是y=x,它的一個焦點(diǎn)與拋物線y2=16x的焦點(diǎn)相同,則雙曲線的方程為________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          若點(diǎn)P在曲線C1=1上,點(diǎn)Q在曲線C2:(x-5)2+y2=1上,點(diǎn)R在曲線C3:(x+5)2+y2=1上,則|PQ|-|PR|的最大值是________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知雙曲線C :的焦距為10 ,點(diǎn)P (2,1)在C 的漸近線上,
          則C的方程為( 。
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè)雙曲線的兩條漸近線與直線分別交于A,B兩點(diǎn),F(xiàn)為該雙曲線的右焦點(diǎn).若, 則該雙曲線的離心率的取值范圍是(   )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若雙曲線的左焦點(diǎn)在拋物線的準(zhǔn)線上,則P的值為
          A.2B.3 C.4D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知雙曲線的中心在原點(diǎn),焦點(diǎn)在x軸上,它的一條漸近線與x軸的夾角為α,且<α<,則雙曲線的離心率的取值范圍是________.

          查看答案和解析>>

          同步練習(xí)冊答案