【題目】設(shè)數(shù)列的前
項(xiàng)和為
,對一切
,點(diǎn)
都在函數(shù)
的圖象上.
(1)求,歸納數(shù)列
的通項(xiàng)公式(不必證明).
(2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為
,
,
,
;
,
,
,
;
,…,分別計(jì)算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為
,求
的值.
(3)設(shè)為數(shù)列
的前
項(xiàng)積,且
,求數(shù)列
的最大項(xiàng).
【答案】(1),
,
,
;(2)2010;(3)
.
【解析】
(1)化簡得到,計(jì)算
,
,
,猜想
得到答案.
(2)計(jì)算,再計(jì)算
,相加得到答案.
(3)計(jì)算,故
,故
是單調(diào)遞減,計(jì)算
得到答案.
(1)因?yàn)辄c(diǎn)在函數(shù)
的圖象上,故
,所以
.令
,得
,所以
;
令,得
,所以
;
令,得
,所以
;
由此猜想:.
(2)因?yàn)?/span>,所以數(shù)列
依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為
,
,
,
;
,
,
,
;
,
每一次循環(huán)記為一組.由于每一個循環(huán)含有4個括號,
故是第25組中第4個括號內(nèi)各數(shù)之和.
由分組規(guī)律知,由各組第4個括號中所有第1個數(shù)組成的數(shù)列是等差數(shù)列,且公差為20.
同理,由各組第4個括號中所有第2個數(shù)、所有第3個數(shù)、所有第4個數(shù)分別組成的數(shù)列也都是等差數(shù)列,且公差均為20.
故各組第4個括號中各數(shù)之和構(gòu)成等差數(shù)列,且公差為80.
注意到第一組中第4個括號內(nèi)各數(shù)之和是68,所以.
又,所以
.
(3)因?yàn)?/span>,故
,
所以.
由于,
所以,故
是單調(diào)遞減,
于是數(shù)列的最大項(xiàng)為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線
的方程為
.以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求的直角坐標(biāo)方程;
(2)若與
有且僅有三個公共點(diǎn),求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)
的直線l的參數(shù)方程為
(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個四位數(shù)的各位數(shù)字相加和為10,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“2017”.試問用數(shù)字0,1,2,3,4,5,6,7組成的無重復(fù)數(shù)字且大于2017的“完美四位數(shù)”有( )個.
A. 71B. 66C. 59D. 53
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護(hù)越來越重視,企業(yè)的環(huán)保意識也越來越強(qiáng).現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費(fèi)用預(yù)算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少有2套系統(tǒng)監(jiān)測出排放超標(biāo),則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標(biāo),則立即同時啟動另外2套系統(tǒng)進(jìn)行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標(biāo),也立即檢查污染源處理系統(tǒng).設(shè)每個時間段(以1小時為計(jì)量單位)被每套系統(tǒng)監(jiān)測出排放超標(biāo)的概率均為,且各個時間段每套系統(tǒng)監(jiān)測出排放超標(biāo)情況相互獨(dú)立.
(1)當(dāng)時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;
(2)若每套環(huán)境監(jiān)測系統(tǒng)運(yùn)行成本為300元/小時(不啟動則不產(chǎn)生運(yùn)行費(fèi)用),除運(yùn)行費(fèi)用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費(fèi)用需要100萬元.現(xiàn)以此方案實(shí)施,問該企業(yè)的環(huán)境監(jiān)測費(fèi)用是否會超過預(yù)算(全年按9000小時計(jì)算)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶考察三種不同的果樹苗A、B、C,經(jīng)引種試驗(yàn)后發(fā)現(xiàn),引種樹苗A的自然成活率為0.8,引種樹苗B、C的自然成活率均為0.9.
(1)若引種樹苗A、B、C各10棵.
①估計(jì)自然成活的總棵數(shù);
②利用①的估計(jì)結(jié)論,從沒有自然成活的樹苗中隨機(jī)抽取兩棵,求抽到的兩棵都是樹苗A的概率;
(2)該農(nóng)戶決定引種B種樹苗,引種后沒有自然成活的樹苗中有75%的樹苗可經(jīng)過人工栽培技術(shù)處理,處理后成活的概率為0.8,其余的樹苗不能成活.若每棵樹苗引種最終成活后可獲利300元,不成活的每棵虧損50元,該農(nóng)戶為了獲利不低于20萬元,問至少引種B種樹苗多少棵?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動圓與
相外切,與
相內(nèi)切.
(1)求動圓圓心的軌跡
的方程;
(2)是動圓
的半徑最小時的圓,傾斜角為
且過點(diǎn)
的直線l與
相切,與軌跡
交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物興趣小組對冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了月
日至
月
日每天的晝夜溫差與實(shí)驗(yàn)室每天
顆種子的發(fā)芽數(shù),得到以下表格
該興趣小組確定的研究方案是:先從這組數(shù)據(jù)中選取
組數(shù)據(jù),然后用剩下的
組數(shù)據(jù)求線性回歸方程,再用被選取的
組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1) 求統(tǒng)計(jì)數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2) 若選取的是月
日與
月
日的兩組數(shù)據(jù),請根據(jù)
月
日至
月
日的數(shù)據(jù),求出發(fā)芽數(shù)
關(guān)于溫差
的線性回歸方程
,若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差不超過
,則認(rèn)為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程
中斜率和截距最小二乘估法計(jì)算公式:
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com