日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與x軸相切于點(diǎn)(3,0). (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)若g(x)+f(x)=﹣6x2+(3c+9)x,命題p:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|>1為假命題,求實(shí)數(shù)c的取值范圍;
          (Ⅲ)若h(x)+f(x)=x3﹣7x2+9x+clnx(c是與x無關(guān)的負(fù)數(shù)),判斷函數(shù)h(x)有幾個不同的零點(diǎn),并說明理由.

          【答案】解:(I)f′(x)=3x2+2ax+b,∵函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與x軸相切于點(diǎn)(3,0). ∴f′(3)=27+6a+b=0,f(3)=27+9a+3b=0,聯(lián)立解得:a=﹣6,b=9.
          ∴f(x)=x3﹣6x2+9x.
          (II)命題p:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|>1為假命題,等價(jià)于:命題:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|≤1為真命題.∵g(x)+f(x)=﹣6x2+(3c+9)x,∴g(x)=﹣x3+3cx.
          由命題:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|≤1為真命題,可得|g(1)﹣g(﹣1)|≤1,解得:
          又g′(x)=﹣3x2+3c=﹣3 .可得:函數(shù)g(x)在 內(nèi)為減函數(shù),在 內(nèi)為增函數(shù).
          ∵函數(shù)g(x)為奇函數(shù),且|g(1)﹣g(﹣1)|≤1,∴只需|g( )﹣g(﹣ )|≤1,則:4c ≤1,解得c≤
          綜上可得:c的取值范圍是 ≤c≤
          (III)h(x)+f(x)=x3﹣7x2+9x+clnx(c是與x無關(guān)的負(fù)數(shù)),∴h(x)=clnx﹣x2 , (x>0).
          h′(x)= ﹣2x<0,因此函數(shù)h(x)在(0,+∞)上單調(diào)遞減,h(x)至多有一個零點(diǎn).
          ∵c<0,∴(c﹣1)2>1,0< <1,∴ =(c﹣1)2 >0,h(1)=﹣1<0.
          ∴函數(shù)h(x)在 內(nèi)有一個零點(diǎn),因此函數(shù)h(x)在(0,+∞)上恰有一個零點(diǎn).
          【解析】(I)f′(x)=3x2+2ax+b,由于函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與x軸相切于點(diǎn)(3,0).可得f′(3)=27+6a+b=0,f(3)=27+9a+3b=0,聯(lián)立解得a,b.即可得出.(II)命題p:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|>1為假命題,等價(jià)于:命題:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|≤1為真命題.由g(x)+f(x)=﹣6x2+(3c+9)x,可得g(x)=﹣x3+3cx.由命題:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|≤1為真命題,可得|g(1)﹣g(﹣1)|≤1,解得c范圍.又g′(x)=﹣3x2+3c=﹣3 .利用單調(diào)性與奇偶性,只需|g( )﹣g(﹣ )|≤1,解得c,進(jìn)而得出c的取值范圍.(III)h(x)+f(x)=x3﹣7x2+9x+clnx(c是與x無關(guān)的負(fù)數(shù)),h(x)=clnx﹣x2 , (x>0).h′(x)= ﹣2x<0,因此函數(shù)h(x)在(0,+∞)上單調(diào)遞減,h(x)至多有一個零點(diǎn).再利用函數(shù)零點(diǎn)判定定理即可判斷出是否有零點(diǎn).
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè),,表示三條不同的直線,,,表示三個不同的平面,給出下列四個命題:

          ,則

          ,內(nèi)的射影, ,則

          是平面的一條斜線,點(diǎn)為過點(diǎn)的一條動直線,則可能有

          ,則.

          其中正確的序號是_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為3ρ2cos2θ+4ρ2sin2θ=12. (Ⅰ)寫出直線l的極坐標(biāo)方程與曲線C的直角坐標(biāo)方程;
          (Ⅱ)已知與直線l平行的直線l'過點(diǎn)M(1,0),且與曲線C交于A,B兩點(diǎn),試求|AB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=(a+1)lnx﹣x2 ,
          (1)討論函數(shù)f(x)的單調(diào)區(qū)間;
          (2)若函數(shù)f(x)與g(x)在(0,+∞)上的單調(diào)性正好相反. (Ⅰ)對于 ,不等式 恒成立,求實(shí)數(shù)t的取值范圍;
          (Ⅱ)令h(x)=xg(x)﹣f(x),兩正實(shí)數(shù)x1、x2滿足h(x1)+h(x2)+6x1x2=6,證明0<x1+x2≤1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m與n無關(guān)),若 a2i1≤k2﹣2k﹣1對一切m∈N*恒成立,則實(shí)數(shù)k的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校從高一年級學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,其中前三段的頻率成等比數(shù)列.
          (1)求圖中實(shí)數(shù)a的值;
          (2)若該校高一年級共有學(xué)生640人,試估計(jì)該校高一年級期中考試數(shù)學(xué)成績不低于80分的人數(shù);
          (3)若從樣本中數(shù)學(xué)成績在[40,50)與[90,100]兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,記這兩名學(xué)生成績在[90,100]內(nèi)的人數(shù)為X,求隨機(jī)變量X的分布列和期望值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若f(x)為奇函數(shù),且x0是y=f(x)﹣ex的一個零點(diǎn),則下列函數(shù)中,﹣x0一定是其零點(diǎn)的函數(shù)是(
          A.y=f(﹣x)ex﹣1
          B.y=f(x)ex+1
          C.y=f(x)ex﹣1
          D.y=f(﹣x)ex+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體外接球的表面積為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù),α∈[0,π)).以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線C的極坐標(biāo)方程為ρcos2θ=4sinθ. (Ⅰ)設(shè)M(x,y)為曲線C上任意一點(diǎn),求x+y的取值范圍;
          (Ⅱ)若直線l與曲線C交于兩點(diǎn)A,B,求|AB|的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案