日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)y=2x+1的反函數(shù)是f-1(x),則 f-1(x)<0的解集是           ( 。
          分析:由于函數(shù)y=2x+1的反函數(shù)是f-1(x),則 f-1(x)<0的解集就是原函數(shù)y=2x+1中在x<0時,y的取值范圍.
          解答:解:∵函數(shù)y=2x+1的反函數(shù)是f-1(x),
          ∴f-1(x)<0的解集,即x的取值范圍就是原函數(shù)y=2x+1中在x<0時,y的取值范圍.
          ∴x<0時,0<2x<1,
          ∴1<y=2x+1<2.
          故選B.
          點評:本題考查反函數(shù),明確“互為反函數(shù)的兩個函數(shù)定義域與值域互換”的性質(zhì)是提高解題效率的關(guān)鍵.當(dāng)然,也可以先求得其反函數(shù),再解不等式,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
          (1)若函數(shù)f(x)=2
          x
          確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項公式;
          (2)對(1)中{bn},不等式
          1
          bn+1
          +
          1
          bn+2
          +…+
          1
          b2n
          1
          2
          loga(1-2a)
          對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍;
          (3)設(shè)cn=
          1+(-1)λ
          2
          3n+
          1-(-1)λ
          2
          •(2n-1)(λ為正整數(shù))
          ,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項組成的數(shù)列為{tn},求數(shù)列{tn}前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•浦東新區(qū)一模)由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
          (1)若函數(shù)f(x)=2
          x
          確定數(shù)列{an}的反數(shù)列為{bn},求bn
          (2)設(shè)cn=3n,數(shù)列{cn}與其反數(shù)列{dn}的公共項組成的數(shù)列為{tn}
          (公共項tk=cp=dq,k、p、q為正整數(shù)).求數(shù)列{tn}前10項和S10;
          (3)對(1)中{bn},不等式
          1
          bn+1
          +
          1
          bn+2
          +…+
          1
          b2n
          1
          2
          loga(1-2a)
          對任意的正整數(shù)n恒成立,求實數(shù)a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若函數(shù)y=f(x)存在反函數(shù)y=f-1(x),由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),由函數(shù)y=f-1(x)確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
          (1)若數(shù)列{bn}是函數(shù)f(x)=
          x+1
          2
          確定數(shù)列{an}的反數(shù)列,試求數(shù)列{bn}的前n項和Sn;
          (2)若函數(shù)f(x)=2
          x
          確定數(shù)列{cn}的反數(shù)列為{dn},求{dn}的通項公式;
          (3)對(2)題中的{dn},不等式
          1
          dn+1
          +
          1
          dn+2
          +…+
          1
          d2n
          1
          2
          log(1-2a)對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:浦東新區(qū)一模 題型:解答題

          由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
          (1)若函數(shù)f(x)=2
          x
          確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項公式;
          (2)對(1)中{bn},不等式
          1
          bn+1
          +
          1
          bn+2
          +…+
          1
          b2n
          1
          2
          loga(1-2a)
          對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍;
          (3)設(shè)cn=
          1+(-1)λ
          2
          3n+
          1-(-1)λ
          2
          •(2n-1)(λ為正整數(shù))
          ,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項組成的數(shù)列為{tn},求數(shù)列{tn}前n項和Sn

          查看答案和解析>>

          同步練習(xí)冊答案