日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)判斷函數(shù)在x∈(0,+∞)上的單調(diào)性并證明你的結(jié)論;
          (2)猜想函數(shù)在x∈(-∞,0)∪(0,+∞)上的單調(diào)性。(只需寫出結(jié)論,不用證明)
          (3)利用題(2)的結(jié)論,求使不等式在x∈[1,5]上恒成立時的實數(shù)m的取值范圍。
          解:(1)在(0,2]上是減函數(shù),在[2,+∞)上是增函數(shù)。
          證明:設任意,
          ,
          又設,則,∴;
          在(0,2]上是減函數(shù);
          又設,則,∴,
          在[2,+∞)上是增函數(shù)。
          (2)由(1)及f(x)是奇函數(shù),可猜想:f(x)在上是增函數(shù), f(x)在上是減函數(shù)。
          (3)∵在x∈[1,5]上恒成立,
          x∈[1,5]上恒成立,
          由(2)中結(jié)論,可知函數(shù)在x∈[1,5]上的最大值為10,此時x=1,
          要使原命題成立,當且僅當
          ,解得:m<-2或,
          ∴實數(shù)m的取值范圍是{m|m<-2或}。
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知集合M是同時滿足下列兩個性質(zhì)的函數(shù)f(x)的全體:
          ①函數(shù)f(x)在其定義域上是單調(diào)函數(shù);
          ②在函數(shù)f(x)的定義域內(nèi)存在閉區(qū)間[a,b]使得f(x)在[a,b]上的最小值是
          a
          2
          ,且最大值是
          b
          2
          .請解答以下問題
          (1)判斷函數(shù)f(x)=x+
          2
          x
          (x∈(0,+∞))
          是否屬于集合M?并說明理由;
          (2)判斷函數(shù)g(x)=-x3是否屬于集合M?并說明理由.若是,請找出滿足②的閉區(qū)間[a,b];
          (3)若函數(shù)h(x)=
          x-1
          +t∈M
          ,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          集合A是由適合以下性質(zhì)的函數(shù)f(x)構成的:對于任意的,且u、υ∈(-1,1),都有|f(u)-f(υ)|≤3|u-υ|.
          (1)判斷函數(shù)f1(x)=
          1+x2
          是否在集合A中?并說明理由;
          (2)設函數(shù)f(x)=ax2+bx,且f(x)∈A,試求2a+b的取值范圍;
          (3)在(2)的條件下,若f(2)=6,且對于滿足(2)的每個實數(shù)a,存在最小的實數(shù)m,使得當x∈[m,2]時,|f(x)|≤6恒成立,試求用a表示m的表達式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設A是同時符合以下性質(zhì)的函數(shù)f(x)組成的集合:
          ①?x∈[0,+∞),都有f(x)∈(1,4];②f(x)在[0,+∞)上是減函數(shù).
          (1)判斷函數(shù)f1(x)=2-
          x
          f2(x)=1+3•(
          1
          2
          )x
          (x≥0)是否屬于集合A,并簡要說明理由;
          (2)把(1)中你認為是集合A中的一個函數(shù)記為g(x),若不等式g(x)+g(x+2)≤k對任意的x≥0總成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•長寧區(qū)二模)定義:對函數(shù)y=f(x),對給定的正整數(shù)k,若在其定義域內(nèi)存在實數(shù)x0,使得f(x0+k)=f(x0)+f(k),則稱函數(shù)f(x)為“k性質(zhì)函數(shù)”.
          (1)判斷函數(shù)f(x)=
          1
          x
          是否為“k性質(zhì)函數(shù)”?說明理由;
          (2)若函數(shù)f(x)=lg
          a
          x2+1
          為“2性質(zhì)函數(shù)”,求實數(shù)a的取值范圍;
          (3)已知函數(shù)y=2x與y=-x的圖象有公共點,求證:f(x)=2x+x2為“1性質(zhì)函數(shù)”.

          查看答案和解析>>

          同步練習冊答案