日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)數(shù)列{an}的前n項和為Sn.已知a1=1,Sn=
          1
          3
          (an+1-1)
          ,n∈N*
          (1)寫出a2,a3的值,并求數(shù)列{an}的通項公式;
          (2)記bn=
          1
          log4an+1log4an+2
          ,數(shù)列{bn}的前n項和為Tn,試比較Tn與1的大。
          分析:(1)當(dāng)n≥2時,由an+1=3Sn+1可得an=3Sn-1+1,兩式相減,可得數(shù)列{an}是以1為首項,4為公比的等比數(shù)列,從而可得數(shù)列的通項;
          (2)確定數(shù)列的通項,利用裂項法求和,即可得出結(jié)論.
          解答:解:(1)由已知易得:a2=4,a3=16   …(2分)
          當(dāng)n≥2時,由an+1=3Sn+1可得an=3Sn-1+1,兩式相減得:an+1=4an
          又由于a1=1,a2=4,
          所以數(shù)列{an}是以1為首項,4為公比的等比數(shù)列,
          所以其通項公式為:an=4n-1(n∈N*)…(6分)
          (2)由(1)可知bn=
          1
          log4an+1log4an+2
          =
          1
          (n+1)n
          =
          1
          n
          -
          1
          n+1
          …(8分)
          則Tn=(1-
          1
          2
          )+(
          1
          2
          -
          1
          3
          )+…+(
          1
          n
          -
          1
          n+1
          )=1-
          1
          n+1
          <1…(12分)
          點評:本題考查數(shù)列遞推式,考查數(shù)列的通項與求和,考查學(xué)生的計算能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項的和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)數(shù)列an的前n項的和為Sn,a1=
          3
          2
          ,Sn=2an+1-3

          (1)求a2,a3
          (2)求數(shù)列an的通項公式;
          (3)設(shè)bn=(2log
          3
          2
          an+1)•an
          ,求數(shù)列bn的前n項的和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)數(shù)列{an}的前n項和Sn=2an+
          3
          2
          ×(-1)n-
          1
          2
          ,n∈N*
          (Ⅰ)求an和an-1的關(guān)系式;
          (Ⅱ)求數(shù)列{an}的通項公式;
          (Ⅲ)證明:
          1
          S1
          +
          1
          S2
          +…+
          1
          Sn
          10
          9
          ,n∈N*

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          不等式組
          x≥0
          y≥0
          nx+y≤4n
          所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點)個數(shù)為an(n∈N*
          (1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
          (2)求數(shù)列{an}的通項公式;
          (3)設(shè)數(shù)列an的前n項和為SnTn=
          Sn
          5•2n
          ,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•鄭州一模)設(shè)數(shù)列{an}的前n項和Sn=2n-1,則
          S4
          a3
          的值為( 。

          查看答案和解析>>

          同步練習(xí)冊答案