日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知全集U={R},集合A={x|log2(3﹣x)≤2},集合B=
          (1)求A,B;
          (2)求(CUA)∩B.

          【答案】
          (1)解:由已知得:log2(3﹣x)≤log24,∴

          解得﹣1≤x<3,∴A={x|﹣1≤x<3}.

          =x|﹣2<x≤3

          ∴B={x|﹣2<x≤3}


          (2)解:由(I)可得CUA={x|x<﹣1或x≥3}.

          故(CUA)∩B={x|﹣2<x<﹣1或x=3}


          【解析】(1)通過解對數(shù)不等式化簡集合A,通過解分式不等式化簡集合B.(2)利用補(bǔ)集的定義求出集合A的補(bǔ)集;再利用交集的定義求出集合的交集.
          【考點(diǎn)精析】本題主要考查了交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識點(diǎn),需要掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)y=x2﹣2x的定義域?yàn)閧0,1,2,3},那么其值域?yàn)椋?/span>
          A.{y|﹣1≤y≤3}
          B.{y|0≤y≤3}
          C.{0,1,2,3}
          D.{﹣1,0,3}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中, 平面 , , , 為線段上一點(diǎn), 的中點(diǎn).

          (1)證明: 平面;

          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合P={y|y=( x , x>0},Q={x|y=lg(2x﹣x2)},則(RP)∩Q為(
          A.[1,2)
          B.(1,+∞)
          C.[2,+∞)
          D.[1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】A={x|x2﹣2x﹣8<0},B={x|x2+2x﹣3>0},C={x|x2﹣3ax+2a2<0},
          (1)求A∩B.
          (2)試求實(shí)數(shù)a的取值范圍,使C(A∩B).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,焦點(diǎn)F在軸正半軸上,準(zhǔn)線與圓相切.

          )求拋物線的方程;

          )已知直線和拋物線交于點(diǎn),命題若直線過定點(diǎn)(0,1),則

          請判斷命題的真假,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=ax﹣1(a>0,且a≠1).
          (1)求f(2)+f(﹣2)的值;
          (2)求f(x)的解析式;
          (3)解關(guān)于x的不等式f(x)<4,結(jié)果用集合或區(qū)間表示.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若二次函數(shù)f(x)=x2+bx+c滿足f(2)=f(﹣2),且函數(shù)的f(x)的一個根為1.
          (1)求函數(shù)f(x)的解析式;
          (2)對任意的x∈[ ,+∞),方程4mf(x)+f(x﹣1)=4﹣4m有解,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=﹣ +x在區(qū)間[m,n]上的最小值是2m,最大值是2n,求m,n的值.

          查看答案和解析>>

          同步練習(xí)冊答案