日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. cos(a-b)cos(b-g)+sin(a-b)sin(b-g)等于(。

          Acos(a-2b+g)     Bcos(a-g)     Csin(a

          答案:A
          提示:

          直接逆用cos(a-b)。

           


          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2011•杭州一模)已知點O為△ABC的外心,角A,B,C的對邊分別滿足a,b,c,
          (I)若3
          OA
          +4
          OB
          +5
          OC
          =
          0
          ,求cos∠BOC的值;
          (II)若
          CO
          AB
          =
          BO
          CA
          ,求
          b2+c2
          a2
          的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知正方形ABCD的邊長是4,對角線AC與BD交于O,將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
          3
          4
          ,則其中的真命題是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量
          m
          =(2a-c,b)與向量
          n
          =(cosB,-cosC)互相垂直.
          (1)求角B的大小;
          (2)求函數(shù)y=2sin2C+cos(B-2C)的值域;
          (3)若AB邊上的中線CO=2,動點P滿足
          AP
          =sin2θ•
          AO
          +cos2θ•
          AC
          (θ∈R)
          ,求(
          PA
          +
          PB
          )•
          PC
          的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知正方形ABCD的邊長是4,對角線AC與BD交于O.將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
          3
          4
          ,則其中的真命題是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源:2006年北京市海淀區(qū)高考數(shù)學模擬試卷(二)(解析版) 題型:選擇題

          已知正方形ABCD的邊長是4,對角線AC與BD交于O.將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos,則其中的真命題是( )
          A.①②③
          B.①②④
          C.②③④
          D.①③④

          查看答案和解析>>

          同步練習冊答案