日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.

          (1)求異面直線B1C1與AC所成角的大。

          (2)若該直三棱柱ABC-A1B1C1的體積為,求點A到平面A1BC的距離.

           

          【答案】

          (1)45°;(2).

          【解析】

          試題分析:(1)求異面直線所成的角,關鍵是作出這兩條直線所成的角,作法是利用平移思想(即作平行線),當然我們要充分利用圖中已有的平行關系作圖,如本題中有,就不需要另外作平行線了,還要注意的是異面直線所成的角不大于90°;(2)求點到平面的距離,一般要作出垂線段,求垂線段的長,即過點作平面的垂線,首先觀察尋找原有圖形中的垂直關系,發(fā)現(xiàn)可證平面⊥平面,因此我們只要在平面內(nèi)作,垂足為,則可證為所要求的垂線段,其長即為要求的距離.另外由于點,平面所在的三棱錐的體積很容易求得,故也可用體積法求解.

          試題解析:(1)∵BC∥B1C1,

          ∴∠ACB為異面直線B1C1與AC所成角(或它的補角),(2分)

          ∵∠ABC=90°,AB=BC=1,

          ∴∠ACB=45°,

          ∴異面直線B1C1與AC所成角為45°.(4分)

          (2)∵,三棱柱的體積.

          ,(2分)

          ⊥平面1,∴,,

          設點A到平面A1BC的距離為h,(4分)

          三棱錐A1-ABC的體積V==三棱錐A-A1BC的體積V=,(6分)

          .(8分)

          考點:(1)異面直線所成的角;(2)點到平面的距離.

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中點.
          (Ⅰ)求證:CD⊥AB′;
          (Ⅱ)求二面角A′-AB′-C的大小;
          (Ⅲ)求直線B′D與平面AB′C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•瀘州一模)如圖,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
          2
          a
          ,則AB′與側(cè)面AC′所成角的大小為
          30°
          30°

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有兩個動點E,F(xiàn),且EF=a (a為常數(shù)).
          (Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;
          (Ⅱ)判斷三棱錐B-CEF的體積是否為定值.若是定值,求出這個三棱錐的體積;若不是定值,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
          (1)求證:A′B⊥面AB′C;
          (2)求二面角B-B′C-A的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,點D是BC的中點,∠ACB=90°,AC=BC=1,AA′=2,
          (1)欲過點A′作一截面與平面AC'D平行,問應當怎樣畫線,寫出作法,并說明理由;
          (2)求異面直線BA′與 C′D所成角的余弦值.

          查看答案和解析>>

          同步練習冊答案