日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)數(shù)學(xué)公式,已知a<b<c,且數(shù)學(xué)公式,曲線y=f(x)在x=1處取極值.
          (Ⅰ)如果函數(shù)f(x)的遞增區(qū)間為[s,t],求|s-t|的取值范圍;
          (Ⅱ)如果當(dāng)x≥k(k是與a,b,c無關(guān)的常數(shù))時,恒有f(x)+a<0,求實數(shù)k的最小值.

          解:(Ⅰ)∵f′(x)=ax2+2bx+c,
          ∴f′(1)=a+2b+c=0又a<b<c,
          得4a<a+2b+c<4c,即4a<0<4c,
          故a<0,c>0.
          則判別式△=4b2-4ac≥0,
          ∴方程f′(x)=ax2+2bx+c=0(*)有兩個不等實根,
          設(shè)為x1,x2,又由f′(1)=a+2b+c=0知,x1=1為方程(*)的一個實根,
          又由根與系數(shù)的關(guān)系得,.(3分)
          當(dāng)x<x2或x>x1時,f′(x)<0,當(dāng)x2<x<x1時,f′(x)>0,
          故函數(shù)f(x)的遞增函數(shù)區(qū)間為[x2,x1],
          由題設(shè)知[x2,x1]=[s,t],
          因此,(6分)
          由(1)知,得|s-t|的取值范圍為[2,4). (8分)
          (Ⅱ)由f′(x)+a<0,即ax2+2bx+a+c<0,即ax2+2bx-2b<0.
          因a<0,得,整理得. (9分)
          設(shè),它可以看作是關(guān)于的一次函數(shù).
          由題意,函數(shù)y=對于恒成立.
          ,即,得.(11分)
          由題意,故
          因此k的最小值為.(13分).
          分析:(Ⅰ)由題設(shè)先求出f′(x)=ax2+2bx+c,再由f′(1)=a+2b+c=0,a<b<c,推導(dǎo)出判別式△=4b2-4ac≥0,由此利用題設(shè)條件,結(jié)合根與系數(shù)的關(guān)系,能夠得到|s-t|的取值范圍.
          (Ⅱ)由f′(x)+a<0,a<0,得.設(shè),由題意,函數(shù)y=對于恒成立.由此能求出k的最小值.
          點評:本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值的應(yīng)用,考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強,難度大,有一定的探索性,對數(shù)學(xué)思維能力要求較高,是高考的重點.解題時要認(rèn)真審題,仔細解答.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)某企業(yè)有兩個生產(chǎn)車間分別在A、B兩個位置,A車間有100名員工,B車間有400名員工,現(xiàn)要在公路AC上找一點D,修一條公路BD,并在D處建一個食堂,使得所有員工均在此食堂用餐,已知A、B、C中任意兩點間的距離均是1km,設(shè)∠BDC=α,所有員工從車間到食堂步行的總路程為S.
          (1)寫出S關(guān)于α的函數(shù)表達式,并指出α的取值范圍;
          (2)問食堂D建在距離A多遠時,可使總路程S最少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•浙江模擬)設(shè)△ABC的三內(nèi)角A、B、C的對邊長分別為a、b、c,已知a、b、c成等比數(shù)列,且sinAsinC=
          34

          (Ⅰ)求角B的大小;
          (Ⅱ)若x∈[0,π),求函數(shù)f(x)=sin(x-B)+sinx的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a,b,c是實數(shù),函數(shù)f(x)=ax2+bx+c,g(x)=ax+b,當(dāng)-1≤x≤1時|f(x)|≤1.
          (1)證明:|c|≤1;
          (2)證明:當(dāng)-1≤x≤1時,|g(x)|≤2;
          (3)設(shè)a>0,有-1≤x≤1時,g(x)的最大值為2,求f(x).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省永州市藍山二中高三第四次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          設(shè)函數(shù),已知a<b<c,且,曲線y=f(x)在x=1處取極值.
          (Ⅰ)如果函數(shù)f(x)的遞增區(qū)間為[s,t],求|s-t|的取值范圍;
          (Ⅱ)如果當(dāng)x≥k(k是與a,b,c無關(guān)的常數(shù))時,恒有f(x)+a<0,求實數(shù)k的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案