日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)fx)=x3ax2x+1aR).

          (1)當(dāng)a2時(shí),求曲線yfx)在點(diǎn)(1,f 1))處的切線方程;

          (2)當(dāng)a0時(shí),設(shè)gx)=fx+x

          ①求函數(shù)gx)的極值;

          ②若函數(shù)gx)在[1,2]上的最小值是﹣9,求實(shí)數(shù)a的值.

          【答案】(1)8xy40;(2)①極大值是1,極小值為,②﹣3

          【解析】

          (1)求出導(dǎo)數(shù),再求出,然后代入直線的點(diǎn)斜式,求出切線方程;

          (2)①求出導(dǎo)數(shù)的零點(diǎn),然后判斷零點(diǎn)左右的符號(hào),確定極值情況;②因?yàn)楹瘮?shù)連續(xù),所以只需綜合極值、端點(diǎn)處函數(shù)值,大中取大,小中取小,確立函數(shù)的最值.

          解:(1)當(dāng)a2時(shí),fx)=x3+3x2x+1,3x2+6x1

          k8,f1)=4,故切線方程為y48x1),即:8xy40

          (2)①gx)=fx+xx3,a0

          ∴令gx)=3x2+3ax3xx+a)=0x10,x2=﹣ax1

          隨著x的變化,gx)和gx)的變化如下:

          x

          (﹣0

          0

          0,﹣a

          a

          (﹣a+∞

          gx

          +

          0

          0

          +

          gx

          極大值

          極小值

          所以gx)的極大值是g0)=1;極小值為g(﹣a

          gx)=3x2+3ax3xx+a),

          1)當(dāng)﹣1≤a0時(shí),gx≥0,gx)在[12]內(nèi)遞增,

          gxming1(舍去).

          2)當(dāng)﹣2a<﹣1時(shí),則x,gx),gx)關(guān)系如下:

          x

          1,﹣a

          a

          (﹣a2

          gx

          0

          gx

          極小值

          gxming(﹣a(舍).

          3)當(dāng)a2時(shí),gx)在[1,2]內(nèi)單調(diào)遞減,

          gxming2)=6a+9=﹣9,a=﹣3

          綜上可知,a=﹣3

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖甲,在平面四邊形ABCD中,已知∠A=45°,C=90°,ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平ABD⊥平面BDC(如圖乙)設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).

          (1)求證:DC⊥平面ABC;

          (2)求BF與平面ABC所成角的正弦值;

          (3)求二面角B-EF-A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】執(zhí)行如圖所示的程序框圖,當(dāng)輸入的的值為4時(shí),輸出的的值為2,則空白判斷框中的條件可能為( ).

          A. B.

          C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓離心率為,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形.點(diǎn)C是橢圓的下頂點(diǎn),經(jīng)過(guò)橢圓中心O的一條直線與橢圓交于A,B兩個(gè)點(diǎn)(不與點(diǎn)C重合),直線CACB分別與x軸交于點(diǎn)D,E

          1)求橢圓的標(biāo)準(zhǔn)方程.

          2)判斷的大小是否為定值,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)上存在導(dǎo)函數(shù),若,且時(shí),則不等式的解集為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直四棱柱的底面是菱形,,,,E,M,N分別是,,的中點(diǎn).

          1)證明:平面;

          2)求點(diǎn)C到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直三棱柱中,,, ,外接球的球心為,點(diǎn)是側(cè)棱上的一個(gè)動(dòng)點(diǎn).有下列判斷:

          ① 直線與直線是異面直線;②一定不垂直

          ③ 三棱錐的體積為定值; ④的最小值為.

          其中正確的序號(hào)序號(hào)是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),.

          1)討論的單調(diào)性;

          2)當(dāng)時(shí),若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (1)若,求處的切線方程;

          (2)若對(duì)于任意的正數(shù),恒成立,求實(shí)數(shù)的值;

          (3)若函數(shù)存在兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案