【題目】(文科)已知函數(shù).
(1)若,求曲線
在點
處的切線方程;
(2)若對任意恒成立,求實數(shù)
的取值范圍.
【答案】(1) ; (2)
.
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),計算,根據(jù)點斜式可求切線方程;(2)求出函數(shù)的導(dǎo)數(shù),通過討論
的范圍,求出函數(shù)的單調(diào)區(qū)間,求出
的最大值,結(jié)合對任意
恒成立,求出
的取值范圍即可.
試題解析:(1)由,得
,則
又,
.
所以曲線在點
處的切線方程為
,即
.
(2)已知對任意恒成立,
令
①當(dāng)時,
,
在
上單調(diào)遞減,
,恒成立.
②當(dāng)時,二次函數(shù)
的開口方向向下,對稱軸為
,且
,
所以當(dāng)時,
,
,
在
上單調(diào)遞減,
,恒成立.
③當(dāng)時,二次函數(shù)
的開口方向向上,對稱軸為
,
所以在
上單調(diào)遞增,且
,
故存在唯一,使得
,即
.
當(dāng)時,
,
,
單調(diào)遞減;
當(dāng)時,
,
,
單調(diào)遞增.
所以在上,
.
所以得
,
綜上,得取值范圍是
.
【方法點晴】本題主要考查利用導(dǎo)數(shù)求函數(shù)的最值以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:① 分離參數(shù)恒成立(
可)或
恒成立(
即可);② 數(shù)形結(jié)合(
圖象在
上方即可);③ 討論最值
或
恒成立;④ 討論參數(shù).本題是利用方法 ③ 求得
的范圍的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左頂點為
,右焦點為
,過點
且斜率為1的直線交橢圓
于另一點
,交
軸于點
,
.
(1)求橢圓的方程;
(2)過點作直線
與橢圓
交于
兩點,連接
(
為坐標(biāo)原點)并延長交橢圓
于點
,求
面積的最大值及取最大值時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,點E、F分別在邊AB、DC上,M為AD的中點,且 =0,則△MEF的面積的取值范圍為( )
A.
B.[1,2]
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)實數(shù)滿足
,若目標(biāo)函數(shù)
的最大值為6,則
的最小值為( )
A. B.
C.
D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間共有名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(Ⅰ) 根據(jù)莖葉圖計算樣本均值;
(Ⅱ) 日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間名工人中有幾名優(yōu)秀工人;
(Ⅲ) 從該車間名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間共有名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(Ⅰ) 根據(jù)莖葉圖計算樣本均值;
(Ⅱ) 日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間名工人中有幾名優(yōu)秀工人;
(Ⅲ) 從該車間名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的焦點
、
在
軸上,且橢圓
經(jīng)過
,過點
的直線
與
交于點
,與拋物線
:
交于
、
兩點,當(dāng)直線
過
時
的周長為
.
(Ⅰ)求的值和
的方程;
(Ⅱ)以線段為直徑的圓是否經(jīng)過
上一定點,若經(jīng)過一定點求出定點坐標(biāo),否則說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com