日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (12分)有一塊邊長(zhǎng)為4的正方形鋼板,現(xiàn)對(duì)其切割、焊接成一個(gè)長(zhǎng)方體無(wú)蓋容器(切、焊損耗忽略不計(jì))。有人應(yīng)用數(shù)學(xué)知識(shí)作如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)全等的小正方形,剩余部分圍成一個(gè)長(zhǎng)方體,該長(zhǎng)方體的高是小正方形的邊長(zhǎng)。

          (1)請(qǐng)你求出這種切割、焊接而成的長(zhǎng)方體容器的最大容積

          (2)請(qǐng)你判斷上述方案是否是最佳方案,若不是,請(qǐng)?jiān)O(shè)計(jì)一種新方案,使材料浪費(fèi)最少,且所得長(zhǎng)方體容器的容積。

           

          【答案】

          (1)當(dāng)時(shí),取最大值 ;

          (2)重新設(shè)計(jì)方案如下:

           

          如圖①,在正方形的兩個(gè)角處各切下一個(gè)邊長(zhǎng)為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;將圖②焊成長(zhǎng)方體容器.新焊長(zhǎng)方體容器底面是一長(zhǎng)方形,長(zhǎng)為3,寬為2,此長(zhǎng)方體容積為6,故第二種方案符合要求.

          【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。求解最值問題。

          (1)因?yàn)樵O(shè)切去正方形邊長(zhǎng)為x,則焊接成的長(zhǎng)方體的底面邊長(zhǎng)為,高為x,

          ,然后求解導(dǎo)數(shù)來(lái)判定單調(diào)性得到極值,進(jìn)而求解最值。

          (2)在正方形的兩個(gè)角處各切下一個(gè)邊長(zhǎng)為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;將圖②焊成長(zhǎng)方體容器.新焊長(zhǎng)方體容器底面是一長(zhǎng)方形,長(zhǎng)為3,寬為2,此長(zhǎng)方體容積為6,故第二種方案符合要求

          (1)設(shè)切去正方形邊長(zhǎng)為x,則焊接成的長(zhǎng)方體的底面邊長(zhǎng)為,高為x,

                                    ……(2分)

          .                                ……(3分)

          當(dāng)時(shí),是關(guān)于x的增函數(shù);

          當(dāng)時(shí),是關(guān)于x的減函數(shù).

          ∴當(dāng)時(shí),取最大值                                       ……(7分)

          (2)重新設(shè)計(jì)方案如下:

           

          如圖①,在正方形的兩個(gè)角處各切下一個(gè)邊長(zhǎng)為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;將圖②焊成長(zhǎng)方體容器.新焊長(zhǎng)方體容器底面是一長(zhǎng)方形,長(zhǎng)為3,寬為2,此長(zhǎng)方體容積為6,故第二種方案符合要求.……(12分)

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)有一塊邊長(zhǎng)為4的正方形鋼板,現(xiàn)對(duì)其進(jìn)行切割、焊接成一個(gè)長(zhǎng)方體形無(wú)蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識(shí)作了如下設(shè)計(jì):如圖(a),在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成一個(gè)長(zhǎng)方體,該長(zhǎng)方體的高為小正方形邊長(zhǎng),如圖(b).
          (1)請(qǐng)你求出這種切割、焊接而成的長(zhǎng)方體的最大容積V1;
          (2)由于上述設(shè)計(jì)存在缺陷(材料有所浪費(fèi)),請(qǐng)你重新設(shè)計(jì)切、焊方法,使材料浪費(fèi)減少,而且所得長(zhǎng)方體容器的容積V2>V1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011屆山西省介休市十中高三下學(xué)期模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

          (本小題滿分12分)
          有一塊邊長(zhǎng)為4的正方形鋼板,現(xiàn)對(duì)其切割、焊接成一個(gè)長(zhǎng)方體無(wú)蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識(shí)作如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成一個(gè)長(zhǎng)方體,該長(zhǎng)方體的高是小正方形的邊長(zhǎng).
          (1)請(qǐng)你求出這種切割、焊接而成的長(zhǎng)方體容器的最大容積V1;
          (2)請(qǐng)你判斷上述方案是否是最佳方案,若不是,請(qǐng)?jiān)O(shè)計(jì)一種新方案,使材料浪費(fèi)最少,且所得長(zhǎng)方體容器的容積V2>V1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山西省介休市高三下學(xué)期模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

          (本小題滿分12分)

          有一塊邊長(zhǎng)為4的正方形鋼板,現(xiàn)對(duì)其切割、焊接成一個(gè)長(zhǎng)方體無(wú)蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識(shí)作如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成一個(gè)長(zhǎng)方體,該長(zhǎng)方體的高是小正方形的邊長(zhǎng).

          (1)請(qǐng)你求出這種切割、焊接而成的長(zhǎng)方體容器的最大容積V1;

          (2)請(qǐng)你判斷上述方案是否是最佳方案,若不是,請(qǐng)?jiān)O(shè)計(jì)一種新方案,使材料浪費(fèi)最少,且所得長(zhǎng)方體容器的容積V2>V1.

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省高二上學(xué)期第一次段考理科數(shù)學(xué)卷 題型:解答題

          (本題滿分14分).有一塊邊長(zhǎng)為4的正方形鋼板,現(xiàn)對(duì)其切割、焊接成一個(gè)長(zhǎng)方體形無(wú)蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識(shí)作如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)邊長(zhǎng)為的小正方形,剰余部分圍成一個(gè)長(zhǎng)方體,該長(zhǎng)方體的高是小正方形的邊長(zhǎng).

          (1)請(qǐng)你求出這種切割、焊接而成的長(zhǎng)方體容器的的容積V1(用表示);

          (2)經(jīng)過設(shè)計(jì)(1)的方法,計(jì)算得到當(dāng)時(shí),Vl取最大值,為了材料浪費(fèi)最少,工人師傅還實(shí)踐出了其它焊接方法,請(qǐng)寫出與(1)的焊接方法更佳(使材料浪費(fèi)最少,容積比Vl大)的設(shè)計(jì)方案,并計(jì)算利用你的設(shè)計(jì)方案所得到的容器的容積。

           

          查看答案和解析>>