日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),且函數(shù)f(x)與g(x)的圖象關(guān)于直線y=x對(duì)稱,又g(1)=0,f()=2-
          (1)求f(x)的表達(dá)式及值域;
          (2)問(wèn)是否存在實(shí)數(shù)m,使得命題p:f(m2-m)<f(3m-4)和q:滿足復(fù)合命題p且q為真命題?若存在,求出m的取值范圍,若不存在,說(shuō)明理由.
          【答案】分析:(1)函數(shù)表達(dá)式的求解主要根據(jù)函數(shù)性質(zhì),如此題中f(x)與g(x)的圖象關(guān)于直線y=x對(duì)稱;求值域應(yīng)先判斷函數(shù)單調(diào)性,再求解
          (2)復(fù)合命題p且q為真命題即p,q均為真命題,利用函數(shù)的單調(diào)性以及反函數(shù)的性質(zhì),求出兩個(gè)命題不等式的解集即可求出結(jié)果.
          解答:解:(1)因?yàn)楹瘮?shù)f(x)與g(x)的圖象關(guān)于直線y=x對(duì)稱,g(1)=0,則f(0)=1即b=1,
          又由f()=,得+2=2,可得a=-1,故f(x)的表達(dá)式為f(x)=(x≥0)
          f(x)==在定義域[0,+∞)上單調(diào)遞減,f(0)=1,又因?yàn)閒(x)>0,所以f(x)的值域?yàn)椋?,1]
          (2)復(fù)合命題p且q為真命題即要求p,q均為真命題.
          命題p:∵f(x)在定義域[0,+∞)上單調(diào)遞減,
          故命題p:f(m2-m)<f(3m-4)為真命題?m2-m>3m-4≥0?m且m≠2;
          命題q:g(,因?yàn)楹瘮?shù)f(x)與g(x)的圖象關(guān)于直線y=x對(duì)稱,所以兩個(gè)函數(shù)互為反函數(shù),具有相同的單調(diào)性,所以f()==,所以,即m
          p,q均為真命題時(shí)m的范圍是
          點(diǎn)評(píng):本題考查函數(shù)與方程的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、反函數(shù)、分式不等式的解法、命題的真假判斷等知識(shí),考查分析問(wèn)題解決問(wèn)題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          例4、已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù).又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時(shí)函數(shù)取得最小值-5.
          ①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x2+ax+b(a>0,b∈R),x∈R
          (1)若-1為f(x)=0的一個(gè)根,且函數(shù)f(x)的值域?yàn)閇-4,+∞),求f(x)的解析式;
          (2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),h(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          1
          3
          ax3+  
          1
          2
          bx2+cx

          (1)若函數(shù)f(x)有三個(gè)零點(diǎn)x1,x2,x3,且x1+x2+x3=
          9
          2
          ,x
          1
          x3=-12
          ,且a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)若f(1)=-
          1
          2
          a
          ,且3a>2c>2b,試問(wèn):導(dǎo)函數(shù)f(x)在區(qū)間(0,2)內(nèi)是否有零點(diǎn),并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•房山區(qū)一模)已知函數(shù)f(x)的定義域是D,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;  ②f(
          x
          5
          )=
          1
          2
          f(x);  ③f(1-x)=1-f(x).則f(
          4
          5
          )=
          1
          2
          1
          2
          ,f(
          1
          2013
          )=
          1
          32
          1
          32

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•房山區(qū)一模)已知函數(shù)f(x)的定義域是D,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:
          ①f(0)=0;  
          f(
          x
          5
          )=
          1
          2
          f(x)
          ;  
          ③f(1-x)=1-f(x).
          f(
          4
          5
          )
          =
          1
          2
          1
          2
          ,f(
          1
          12
          )
          =
          1
          4
          1
          4

          查看答案和解析>>

          同步練習(xí)冊(cè)答案