【題目】已知橢圓的離心率為
,以橢圓E的長(zhǎng)軸和短軸為對(duì)角線的四邊形的面積為
.
(1)求橢圓E的方程;
(2)若直線與橢圓E相交于A,B兩點(diǎn),設(shè)P為橢圓E上一動(dòng)點(diǎn),且滿足
(O為坐標(biāo)原點(diǎn)).當(dāng)
時(shí),求
的最小值.
【答案】(1)(2)
【解析】
(1)由離心率及四邊形的面積和a,b,c之間的關(guān)系求出橢圓的方程;
(2)將直線與橢圓聯(lián)立求出兩根之和及兩根之積,,可得
.進(jìn)而寫出P的坐標(biāo),P在橢圓上求出m的范圍,進(jìn)而求出
的表達(dá)式,由反比例函數(shù)的單調(diào)性求出它的最小值.
解:(1)依題意得,.以橢圓E的長(zhǎng)軸和短軸為對(duì)角線的四邊形的面積為
,則
,解得
,
.
所以橢圓E的方程為.
(2)設(shè)A,B兩點(diǎn)的坐標(biāo)分別為,
聯(lián)立方程得
,
,
,
,
因?yàn)?/span>,即
,所以
.
所以點(diǎn),又點(diǎn)P在橢圓C上,所以有
,
化簡(jiǎn)得,
所以,化簡(jiǎn)
,因?yàn)?/span>
,所以
,
因?yàn)?/span>,
又,
,所以
.
令,則
,
當(dāng)時(shí),
取得最小值,最小值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),
恒成立,求整數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓錐(其中
為頂點(diǎn),
為底面圓心)的側(cè)面積與底面積的比是
,則圓錐
與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),直線
與直線
平行,且過坐標(biāo)原點(diǎn),圓
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線和圓
的極坐標(biāo)方程;
(2)設(shè)直線和圓
相交于點(diǎn)
、
兩點(diǎn),求
的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)上的偶函數(shù),其圖象關(guān)于點(diǎn)
對(duì)稱,且在區(qū)間
上是單調(diào)函數(shù),則
的值是( )
A. B.
C.
或
D. 無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某國(guó)有53座城市,任意兩座城市之間要么有一條雙向公路直達(dá),要么沒有直接相連的公路。已知這53座城市之間共有312條公路,并且由任何一座城市出發(fā)通過公路均能到達(dá)其余各城市。每一座城市至多向其余12座城市引出公路,且每走一條公路需要繳納10元路費(fèi)。現(xiàn)甲在城市A,且身上僅有120元。甲是否一定能到達(dá)任意一座城市?證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
,
,
平面
,點(diǎn)
在棱
上.
(Ⅰ)求證:平面平面
;
(Ⅱ)若直線平面
,求此時(shí)三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間某商店出售某種海鮮禮盒,假設(shè)每天該禮盒的需求量在范圍內(nèi)等可能取值,該禮盒的進(jìn)貨量也在
范圍內(nèi)取值(每天進(jìn)1次貨).商店每銷售1盒禮盒可獲利50元;若供大于求,剩余的削價(jià)處理,每處理1盒禮盒虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1盒禮盒可獲利30元.設(shè)該禮盒每天的需求量為
盒,進(jìn)貨量為
盒,商店的日利潤(rùn)為
元.
(1)求商店的日利潤(rùn)關(guān)于需求量
的函數(shù)表達(dá)式;
(2)試計(jì)算進(jìn)貨量為多少時(shí),商店日利潤(rùn)的期望值最大?并求出日利潤(rùn)期望值的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個(gè)人的出生年份對(duì)應(yīng)了十二種動(dòng)物中的一種,即自己的屬相.現(xiàn)有印著十二生肖圖案的毛絨娃娃各一個(gè),小張同學(xué)的屬相為馬,小李同學(xué)的屬相為羊,現(xiàn)在這兩位同學(xué)從這十二個(gè)毛絨娃娃中各隨機(jī)取一個(gè)(不放回),則這兩位同學(xué)都拿到自己屬相的毛絨娃娃的概率是( )
A.B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com