已知曲線的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)寫(xiě)出直線的普通方程與曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過(guò)伸縮變換
得到曲線
,設(shè)
為曲線
上任一點(diǎn),求
的最小值,并求相應(yīng)點(diǎn)
的坐標(biāo).
(1),
;
(2)當(dāng)為(
)或
時(shí),
的最小值為1.
【解析】
試題分析:本題考查直角坐標(biāo)系與極坐標(biāo)系、普通方程與參數(shù)方程之間的轉(zhuǎn)化,考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力.第一問(wèn),利用互化公式將極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,將參數(shù)方程轉(zhuǎn)化為普通方程;第二問(wèn),先通過(guò)已知得到的方程,利用
的方程的特殊性設(shè)出
點(diǎn)的坐標(biāo),代入到所求的表達(dá)式中,利用三角函數(shù)求最值的方法求表達(dá)式的最小值.
試題解析:(1)
4分
(2):
設(shè)為:
7分
所以當(dāng)為(
)或
的最小值為1
10分
考點(diǎn):1.極坐標(biāo)與直角坐標(biāo)之間的轉(zhuǎn)化;2.參數(shù)方程與普通方程之間的轉(zhuǎn)化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
θ |
2 |
A、x2+(y+1)2=1 |
B、(x+1)2+y2=1 |
C、(x-1)2+y2=1 |
D、x2+(y-1)2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(選修4—4:坐標(biāo)系與參數(shù)方程)已知曲線的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,曲線
,
相交于
,
兩點(diǎn).(Ⅰ)把曲線
,
的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;(Ⅱ)求弦
的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年遼寧沈陽(yáng)市高三教學(xué)質(zhì)量監(jiān)測(cè)(一)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知曲線的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,曲線
、
相交于
、
兩點(diǎn). (
)
(Ⅰ)求、
兩點(diǎn)的極坐標(biāo);
(Ⅱ)曲線與直線
(
為參數(shù))分別相交于
兩點(diǎn),求線段
的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省齊齊哈爾市高三二模文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線
的極坐標(biāo)方程為
.
(1)求的直角坐標(biāo)方程;
(2)直線(
為參數(shù))與曲線C交于
,
兩點(diǎn),與
軸交于
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013年海南省?谑懈呖寄M(二)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知曲線的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn),極軸為
軸正方向建立平面直角坐標(biāo)系,直線的參數(shù)方程是:
(為參數(shù)).
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于
,
兩點(diǎn),點(diǎn)
的直角坐標(biāo)為
,若
,求直線的普通方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com