日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)fx=x2+alnx

          1)若a=﹣1,求函數(shù)fx)的極值,并指出極大值還是極小值;

          2)若a=1,求函數(shù)fx)在[1,e]上的最值;

          3)若a=1,求證:在區(qū)間[1,+∞)上,函數(shù)fx)的圖象在gx=x3的圖象下方.

          【答案】1)極小值f1=;(2e2+1;(3)證明見解析

          【解析】

          試題分析:(1)代入a=﹣1,從而化簡fx)并求其定義域,再求導判斷函數(shù)的單調(diào)性及極值即可;

          2)代入a=1,從而化簡fx)并求其定義域,再求導判斷函數(shù)的單調(diào)性及求函數(shù)的最值;

          3)代入a=1,令Fx=gx﹣fx=x3x2﹣lnx,從而化在區(qū)間[1,+∞)上,函數(shù)fx)的圖象在gx=x3的圖象下方為Fx)>0[1,+∞)上恒成立,再化為函數(shù)的最值問題即可.

          解:(1)當a=﹣1時,fx=x2﹣lnx的定義域為(0,+∞),

          f′x=x﹣=

          fx)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù),

          fx)在x=1處取得極小值f1=;

          2)當a=1時,fx=x2+lnx的定義域為(0,+∞),

          f′x=x+0;

          fx)在[1,e]上是增函數(shù),

          fminx=f1=,fmaxx=fe=e2+1;

          3)證明:令Fx=gx﹣fx=x3x2﹣lnx;

          F′x=2x2﹣x﹣=,

          ∵x∈[1+∞),

          ∴F′x=≥0,

          ∴Fx)在[1,+∞)上是增函數(shù),

          Fx≥F1==0;

          故在區(qū)間[1+∞)上,函數(shù)fx)的圖象在gx=x3的圖象下方.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在三棱臺ABC﹣A1B1C1中,平面α過點A1 , B1 , 且CC1∥平面α,平面α與三棱臺的面相交,交線圍成一個四邊形.
          (Ⅰ)在圖中畫出這個四邊形,并指出是何種四邊形(不必說明畫法、不必說明四邊形的形狀);
          (Ⅱ)若AB=8,BC=2B1C1=6,AB⊥BC,BB1=CC1 , 平面BB1C1C⊥平面ABC,二面角B1﹣AB﹣C等于60°,求直線AB1與平面α所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知點P(2,2),圓Cx2y2-8y=0,過點P的動直線l與圓C交于AB兩點,線段AB的中點為M,O為坐標原點.

          (1)M的軌跡方程;

          (2)|OP|=|OM|時,求l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】把函數(shù)y=cos(2x+φ)(|φ|< )的圖象向左平移 個單位,得到函數(shù)y=f(x)的圖象關(guān)于直線x= 對稱,則φ的值為(
          A.﹣
          B.﹣
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】選修4-4:坐標系與參數(shù)方程

          在平面直角坐標系中,以原點為極點, 軸正半軸為極軸建立極坐標系.若曲線的極坐標方程為, 點的極坐標為,在平面直角坐標系中,直線經(jīng)過點,斜率為.

          (1)寫出曲線的直角坐標方程和直線的參數(shù)方程;

          (2)設(shè)直線與曲線相交于兩點,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系xOy中,l是過定點P(4,2)且傾斜角為α的直線;在極坐標系(以坐標原點O為極點,

          x軸非負半軸為極軸,取相同單位長度)中,曲線C的極坐標方程為.

          (1)寫出直線l的參數(shù)方程,并將曲線C的方程化為直角坐標方程;

          (2)若曲線C與直線相交于不同的兩點MN,求|PM|+|PN|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是(

          A.f(x)=x2
          B.f(x)=
          C.f(x)=ex
          D.f(x)=sinx

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,多面體ABCDS中,面ABCD為矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD=

          (1)求證:CD⊥平面ADS;
          (2)求AD與SB所成角的余弦值;
          (3)求二面角A﹣SB﹣D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】橢圓上動點到兩個焦點的距離之和為4,且到右焦點距離的最大值為

          (1)求橢圓的方程;

          (2)設(shè)點為橢圓的上頂點,若直線與橢圓交于兩點不是上下頂點).試問:直線是否經(jīng)過某一定點,若是,求出該定點的坐標;若不是,請說明理由;

          (3)在(2)的條件下,求面積的最大值.

          查看答案和解析>>

          同步練習冊答案