日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:的兩個焦點是F1(c,0),F(xiàn)2(c,0)(c>0)。

          (I)若直線與橢圓C有公共點,求的取值范圍;

          (II)設(shè)E是(I)中直線與橢圓的一個公共點,求|EF1|+|EF2|取得最小值時,橢圓的方程;

          (III)已知斜率為k(k≠0)的直線l與(II)中橢圓交于不同的兩點A,B,點Q滿足    ,其中N為橢圓的下頂點,求直線l在y軸上截距的取值范圍.

           

          【答案】

          (I) .(II).(III)直線縱截距的范圍是.

          【解析】

          試題分析:(I)由題意聯(lián)立方程組

          ,

          根據(jù),即可得到的取值范圍是.

          (II)由橢圓的定義得,

          ,得到當(dāng)時,有最小值,確定得到橢圓的方程的方程.

          (III)設(shè)直線方程為,

          通過聯(lián)立 ,整理得到一元二次方程,設(shè),

          應(yīng)用韋達定理,結(jié)合的中點, ,得到,可建立的方程, 從而由得到使問題得解.

          試題解析:(I)由題意知.

          所以,解得

          所以求的取值范圍是.

          (II)由橢圓的定義得,

          因為,所以當(dāng)時,有最小值,

          此時橢圓的方程的方程為.

          (III)設(shè)直線方程為

          整理得,

          化簡得

          設(shè)

          的中點,所以

          因為,所以

          ,化簡得

          ,

          所以

          ,所以

          .

          考點:橢圓的定義、標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直角坐標(biāo)系xOy中,已知橢圓C:
          y2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率e=
          3
          2
          ,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
          直線與橢圓C相交M、N兩點,且|MN|=1.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足
          PA
          AB
          =m-4,(m∈R)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在直角坐標(biāo)系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率e=
          2
          2
          ,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在直角坐標(biāo)系xOy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率e=
          2
          2
          ,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
          (1)求橢圓C的方程;
          (2)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省湛江二中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,在直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
          直線與橢圓C相交M、N兩點,且|MN|=1.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足=m-4,(m∈R)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年內(nèi)蒙古赤峰市高三統(tǒng)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖,在直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
          直線與橢圓C相交M、N兩點,且|MN|=1.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足=m-4,(m∈R)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

          查看答案和解析>>

          同步練習(xí)冊答案