【題目】如圖,橢圓的中心在坐標原點,焦點在x軸上,A1 , A2 , B1 , B2為橢圓頂點,F(xiàn)2為右焦點,延長B1F2與A2B2交于點P,若∠B1PB2為鈍角,則該橢圓離心率的取值范圍是( )
A.( ,1)
B.(0, )
C.(0, )
D.( ,1)
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為
,設右焦點為
,過原點
的直線
與橢圓
交于
兩點,線段
的中點為
,線段
的中點為
,且
.
(1)求弦的長;
(2)當直線的斜率
,且直線
時,
交橢圓于
,若點
在第一象限,求證:直線
與
軸圍成一個等腰三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將52名志愿者分成A,B兩組參加義務植樹活動,A組種植150捆白楊樹苗,B組種植200捆沙棘樹苗.假定A,B兩組同時開始種植.
(1)根據(jù)歷年統(tǒng)計,每名志愿者種植一捆白楊樹苗用時小時,種植一捆沙棘樹苗用時
小時.應如何分配A,B兩組的人數(shù),使植樹活動持續(xù)時間最短?
(2)在按(1)分配的人數(shù)種植1小時后發(fā)現(xiàn),每名志愿者種植一捆白楊樹苗用時仍為小時,而每名志愿者種植一捆沙棘樹苗實際用時
小時,于是從A組抽調(diào)6名志愿者加入B組繼續(xù)種植,求植樹活動所持續(xù)的時間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,且
,f(0)=0
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的值域;
(3)求證:方程f(x)=lnx至少有一根在區(qū)間(1,3).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:直線y=(2m+1)x+m﹣2的圖象不經(jīng)過第四象限,q:方程x2+ =1表示焦點在x軸上的橢圓,若(¬p)∨q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在某商業(yè)區(qū)周邊有 兩條公路和
,在點
處交匯,該商業(yè)區(qū)為圓心角
,半徑3
的扇形,現(xiàn)規(guī)劃在該商業(yè)區(qū)外修建一條公路
,與
,
分別交于
,要求
與扇形弧相切,切點
不在
,
上.
(1)設試用
表示新建公路
的長度,求出
滿足的關(guān)系式,并寫出
的范圍;
(2)設,試用
表示新建公路
的長度,并且確定
的位置,使得新建公路
的長度最短.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直線坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標方程為
.
(1)直線的普通方程和曲線
的參數(shù)方程;
(2)設點在
上,
在
處的切線與直線
垂直,求
的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=x3﹣3x2﹣9x+3,若函數(shù)g(x)=f(x)﹣m在x∈[﹣2,5]上有3個零點,則m的取值范圍為( )
A.(﹣24,8)
B.(﹣24,1]
C.[1,8]
D.[1,8)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com