日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若函數(shù)的圖象與直線為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成等差數(shù)列,且公差為
          (I)求的值;
          (Ⅱ)若點(diǎn)圖象的對稱中心,且,求點(diǎn)A的坐標(biāo)

          (Ⅰ)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,極小值為;(Ⅱ) .

          解析試題分析:(Ⅰ)直接根據(jù)導(dǎo)數(shù)和零的大小關(guān)系求得單調(diào)區(qū)間,并由單調(diào)性求得極值;(Ⅱ)先由導(dǎo)數(shù)判斷出在R內(nèi)單調(diào)遞增,說明對任意,都有,而,從而得證.
          試題解析:(I)
          的圖象與相切.
          的最大值或最小值,即     (6分)
          (II)又因?yàn)榍悬c(diǎn)的橫坐標(biāo)依次成公差為的等差數(shù)列.所以最小正周期為
          ,所以              (8分)
                           (9分)

                 (10分)
          得k=1,2,
          因此對稱中心為               (12分)
          考點(diǎn):1.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;2. 利用導(dǎo)數(shù)求函數(shù)極值3.利用函數(shù)的最值證明不等式.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)(m為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),函數(shù) 的最小值為1,其中 是函數(shù)f(x)的導(dǎo)數(shù).
          (1)求m的值.
          (2)判斷直線y=e是否為曲線f(x)的切線,若是,試求出切點(diǎn)坐標(biāo)和函數(shù)f(x)的單調(diào)區(qū)間;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),為函數(shù)的導(dǎo)函數(shù).
          (1)設(shè)函數(shù)f(x)的圖象與x軸交點(diǎn)為A,曲線y=f(x)在A點(diǎn)處的切線方程是,求的值;
          (2)若函數(shù),求函數(shù)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知,
          (Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
          (Ⅱ)若處有極值,求的單調(diào)遞增區(qū)間;
          (Ⅲ)是否存在實(shí)數(shù),使在區(qū)間的最小值是3,若存在,求出的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),.
          (1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
          (2)若在區(qū)間上是減函數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)若處的切線方程;
          (2)若在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)是自然對數(shù)的底數(shù)).
          (1)若曲線處的切線也是拋物線的切線,求的值;
          (2)當(dāng)時(shí),是否存在,使曲線在點(diǎn)處的切線斜率與 在
          上的最小值相等?若存在,求符合條件的的個(gè)數(shù);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知是實(shí)數(shù),函數(shù),,分別是的導(dǎo)函數(shù),若在區(qū)間上恒成立,則稱在區(qū)間上單調(diào)性一致.
          (Ⅰ)設(shè),若函數(shù)在區(qū)間上單調(diào)性一致,求實(shí)數(shù)的取值范圍;
          (Ⅱ)設(shè),若函數(shù)在以為端點(diǎn)的開區(qū)間上單調(diào)性一致,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)是定義在的可導(dǎo)函數(shù),且不恒為0,記.若對定義域內(nèi)的每一個(gè),總有,則稱為“階負(fù)函數(shù)”;若對定義域內(nèi)的每一個(gè),總有
          則稱為“階不減函數(shù)”(為函數(shù)的導(dǎo)函數(shù)).
          (1)若既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)的取值范圍;
          (2)對任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負(fù)函數(shù)”?并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案