日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2011•西城區(qū)二模)已知函數(shù)f(x)=
          cos2x
          sin(x+
          π
          4
          )

          (Ⅰ)求函數(shù)f(x)的定義域;
          (Ⅱ)若f(x)=
          4
          3
          ,求sin2x的值.
          分析:(Ⅰ)根據(jù)分母不為0,得到sin(x+
          π
          4
          )不等于0,根據(jù)正弦函數(shù)的圖象與性質(zhì)可列出關(guān)于x的不等式,求出不等式的解集即可得到函數(shù)f(x)的定義域;
          (Ⅱ)把函數(shù)解析式中的分母利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn),分子利用二倍角的余弦函數(shù)公式化簡(jiǎn),并利用平方差公式分解因式,分子分母約分后可得出化簡(jiǎn)結(jié)果,然后根據(jù)f(x)的值得出cosx-sinx的值,最后把所求的式子利用二倍角的正弦函數(shù)公式化簡(jiǎn),加上1減去1和原式保持相等,再把“1”化為sin2x+cos2x后,利用完全平方公式化為關(guān)于cosx-sinx的式子,把求出的cosx-sinx的值代入即可求出值.
          解答:解:(Ⅰ)由題意,sin(x+
          π
          4
          )≠0
          ,(2分)
          所以x+
          π
          4
          ≠kπ(k∈Z)
          ,(3分)
          所以x≠kπ-
          π
          4
           (k∈Z)
          ,(4分)
          函數(shù)f(x)的定義域?yàn)閧x|x≠kπ-
          π
          4
          ,k∈Z }
          ;(5分)
          (Ⅱ)f(x)=
          cos2x
          sin(x+
          π
          4
          )
          =
          cos2x
          sinxcos
          π
          4
          +cosxsin
          π
          4
          (7分)
          =
          2
          cos2x
          sinx+cosx
          (8分)
          =
          2
          (cos2x-sin2x)
          sinx+cosx
          =
          2
          (cosx-sinx)
          ,(10分)
          因?yàn)?span id="xobhsa2" class="MathJye">f(x)=
          4
          3
          ,所以cosx-sinx=
          2
          2
          3
          .(11分)
          所以sin2x=2sinxcosx=1-(1-2sinxcosx)=1-(cosx-sinx)2=1-
          8
          9
          =
          1
          9
          .(13分)
          點(diǎn)評(píng):此題考查了正弦函數(shù)的圖象與性質(zhì),二倍角的正弦、余弦函數(shù)公式,兩角和與差的正弦函數(shù)公式以及特殊角的三角函數(shù)值,第二問利用湊項(xiàng)法把所求的式子化為關(guān)于cosx-sinx的式子是解題的關(guān)鍵,同時(shí)注意“1”的靈活變換.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•西城區(qū)二模)如圖,菱形ABCD的邊長(zhǎng)為6,∠BAD=60°,AC∩BD=O.將菱形ABCD沿對(duì)角線AC折起,得到三棱錐B-ACD,點(diǎn)M是棱BC的中點(diǎn),DM=3
          2

          (Ⅰ)求證:OM∥平面ABD;
          (Ⅱ)求證:平面ABC⊥平面MDO;
          (Ⅲ)求三棱錐M-ABD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•西城區(qū)二模)函數(shù)y=sinπx(x∈R)的部分圖象如圖所示,設(shè)O為坐標(biāo)原點(diǎn),P是圖象的最高點(diǎn),B是圖象與x軸的交點(diǎn),則tan∠OPB=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•西城區(qū)二模)已知函數(shù)f(x)=(1-
          ax
          )ex(x>0)
          ,其中e為自然對(duì)數(shù)的底數(shù).
          (Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在(1,f(1))處的切線與坐標(biāo)軸圍成的面積;
          (Ⅱ)若函數(shù)f(x)存在一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn),且極大值與極小值的積為e5,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•西城區(qū)二模)已知函數(shù)f(x)=
          2
          sin(x+
          π
          4
          )-
          1
          3
          sinx

          (Ⅰ)求函數(shù)f(x)的定義域;
          (Ⅱ)若f(x)=2,求sin2x的值.

          查看答案和解析>>